
Introduction

New and re-emerging viral diseases may arise from 
animal reservoirs when ecological or environmental 
changes increase opportunities for viruses to enter either 
human or animal populations (Woolhouse & Gaunt, 
2007). During the last two decades we witnessed viral 
disease outbreaks caused by HIV, the Ebola virus, West 
Nile virus (WNV), severe acute respiratory syndrome 
coronavirus (SARS-CoV), foot-and-mouth disease virus 
(FMDV), and avian influenza (AI) (Murphy 2008). We 
are now confronted with the recently emerged swine-
originated new influenza A (H1N1) virus (Darwood 
et al. 2009). Its worldwide spread urged the WHO 
(World Health Organisation) in June 2009 to declare 
the first pandemic of the  twenty-first century (http://
www.who.int/mediacentre/news/statements/2009/
h1n1_ pandemic_phase6_20090611/en/index.html). 
Practices of biomedicine such as the increased use 
of pathogenic viruses in research laboratories, vector 
viruses for gene therapy, vaccination with live-virus 

vaccines, and xenotransplantation also pose risks of 
viral outbreaks with epidemic potential (Enserink, 2007; 
Louz et al., 2005, 2008; Normile, 2004). Also we are faced 
with the threat of viruses such as smallpox as weapons 
of bioterrorism (Dembek, Kortepeter, & Pavlin, 2007). 
These threats raise challenges regarding infection con-
trol policies. Outbreaks or epidemics of communicable 
viral diseases can have enormous consequences for 
public and/or animal health and may have enormous 
economical, social, and even political consequences 
affecting many countries worldwide (Bender, Hueston, 
& Osterholm, 2006). To mitigate both spread and impact, 
it is necessary to timely implement and/or develop 
infection control measures. Policy makers nowadays 
face important questions regarding trade-offs between 
different response strategies and degrees of mitigation 
to implement. Given the scale, speed, and complexity 
of epidemics in a globalized world, simulation of trans-
mission scenarios, and evaluation of infection control 
measures becomes a necessity (Jones et al., 2008). 
Mathematical models are now increasingly used for this 
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abstract
Mathematical modeling can be used for the development and implementation of infection control policy 
to combat outbreaks and epidemics of communicable viral diseases. Here an outline is provided of basic 
concepts and approaches used in mathematical modeling and parameterization of disease transmission. 
The use of mathematical models is illustrated, using the 2001 UK foot-and-mouth disease (FMD) epidemic, 
the 2003 global severe acute respiratory syndrome (SARS) epidemic, and human influenza pandemics, as 
examples. This provides insights in the strengths, limitations, and weaknesses of the various models, and 
demonstrates their potential for supporting policy and decision making.
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purpose (Grassly & Fraser, 2008). The use of mathemati-
cal models for quantitative epidemiology of infectious 
diseases has a long history. Mathematical models have 
been widely used to study and understand the spread 
of viral diseases. They have also been successfully used 
for development and evaluation of antiviral therapy 
and vaccination policies against viral diseases such 
as AIDS and measles (Baggaley, Ferguson, & Garnett, 
2005; Gay, 2004). However, their use to inform and guide 
infection control policy, risk assessment, and decision 
making during the course of an outbreak or epidemic 
or for contingency planning is rather recent and less 
well known among regulatory authorities and policy 
and decision makers. The transmission potential of an 
infectious disease is commonly quantified by the basic 
reproduction number R

0
 (Anderson & May, 1991; Dietz, 

1993). R
0
 is defined as the average number of second-

ary cases generated by a single infectious person in a 
totally susceptible population. R

0
 has a threshold value 

that equals 1. In general if R
0
 ≥ 1 then an outbreak will 

lead to an epidemic. If R
0
 < 1, an outbreak will fade out. 

In practice efficacy of infection control measures can 
be measured in terms of the ability to reduce R

t
, the 

reproduction number of a disease at a given time, to a 
value below 1.

In this review we discuss modeling studies on emerg-
ing communicable viral diseases that can have a major 
impact on both public and animal health in light of 
infection control and policy and decision making. In the 
first part we provide an introductory outline on math-
ematic modeling and important concepts. In the second 
part we focus on studies of the 2001 UK foot-and-mouth 
(FMD) outbreak, the 2003 global SARS epidemic and 
future human influenza pandemics with emphasis on 
predicting transmission potential, the course of the 
epidemic, and assessment of effectiveness of infection 
control measures. The purpose of this paper is to dem-
onstrate the application of mathematical models and 
illustrate their potential as a tool for policy and decision 
making.

Mathematical models: model structure, 
model building, and use

When an outbreak of a communicable disease occurs, 
mathematical models can be used to describe the 
spread in a community and to understand infection 
dynamics. The models can also be used to forecast 
characteristics of the outbreak (e.g., size and duration), 
to build epidemic scenarios and to model the impact 
of possible interventions. In addition, they can provide 
guidance to control strategies and policy decisions. 
Models allow estimating important epidemiological 

parameters from the outbreak data. Furthermore, the 
models can be used for preparedness and mitigation 
planning of future outbreaks or epidemics and retro-
spective analysis in support of policy development. 
To facilitate mathematical models for these purposes 
it is necessary to conceptualize the dynamic epidemic 
process and quantify disease transmission. For that it is 
important to choose the modeling procedure, to design 
the model structure and define underlying biological 
and epidemiological assumptions and parameters. Two 
main types of models are commonly distinguished: 
deterministic and non-deterministic or stochastic. The 
models can range from simple compartmental deter-
ministic models to complex spatially stochastic and 
(individually) social-based network models (Koopman, 
2005). The choice of model, its complexity and which 
parameters to specify is context dependent and largely 
driven by the type of disease, available data, the main 
purpose, the questions to be answered, and the exper-
tise available (Keeling & Rohani, 2008). In general, a 
useful model should be fitted to its purpose, include all 
necessary features and be parameterizable from avail-
able data (Keeling & Rohani, 2008). Which details and 
complexities to incorporate to the models’ purpose can 
be a skillful and complex task.

Policy decisions may require the results of more than 
one type of approach or model. The choice of what control 
measures and response strategies to implement is context 
dependent and is usually a compromise between the mag-
nitude of intervention and their logistical and economical 
feasibility (Wearing, Rohani, & Keeling, 2005).

In the following section we provide an outline of basic 
concepts and approaches common to mathematical 
modeling and parameterization of disease transmission. 
This provides understanding of how mathematical mod-
els can be constructed and used as a tool for infection 
control and decision making.

The basic SIR model and model formulation

The majority of the models in epidemiology are com-
partmental and based on systems of differential equa-
tions reflecting disease dynamics and rates of flow of a 
population from one epidemiological state (compart-
ment) to another. These compartmental models can be 
either deterministic or stochastic (see below). The classic 
prototype, the so-called deterministic compartmental 
SIR (susceptible-infectious-recovered) framework, was 
first introduced by Kermack and McKendrick in the 
1930s (Kermack & McKendrick, 1991). In addition to the 
SIR model two other basic models, i.e., SI (susceptible-in-
fectious) and SIS (susceptible-infectious-susceptible) are 
commonly distinguished. The SIR model is regarded as the 
foundation for almost all mathematical epidemiological 
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models. The SIR model classifies host populations in sus-
ceptible S (individual hosts that are susceptible for the 
disease), infectious, I (individuals that are infectious) or 
recovered/removed, R (individuals that recovered with 
immunity or are classified as removed by either death or 
isolation) compartments (Figure 1). S(t), I(t), and R(t) rep-
resent the actual number of individual hosts at time t per 
compartment. This framework is made mathematically by 

formulating a set of non-linear differential equations:

These equations describe the transmission dynamics of 
the infection (flow) from one compartment to another 
that are governed by rate coefficients leading to a flow 
chart as shown in Figure 1 (Anderson & May, 1991; 
Hethcote, 2000). The SIR model is based on the so-called 
mass action principles of reaction kinetics. In epidemio-
logical terms the SIR model in its most elementary form 
is based on the following assumptions: (1) all susceptible 
individual hosts in the population are equally at risk for 
infection which is known as “homogeneous mixing”,  
(2) the infectiousness of all infected individual hosts is 
presumed to be equal and constant, (3) the total popula-
tion size is fixed, i.e., a “closed population” as no demo-
graphic turnover (birth or death) is taken into account 
(Roberts & Heesterbeek, 2003). Since demographic effects 
are ignored, by definition S(t)+I(t)+R(t) equals N(t) which 
represents the total population size. Therefore the third 
equation is redundant. Analogous to the mass-action 
principles, contacts between susceptible and infectious 
hosts are assumed to take place at a rate proportional to 
their numbers in the population. Flow charts usually dis-
play rates of flow rather than absolute numbers that move 
from one compartment to the next. In practice often the 
simplifying assumption is made that the recovery rate γ 
of infected hosts (Keeling & Rohani, 2008) is constant, 
leading to exponentially distributed infectious periods. 
The mean infectious period, i.e., the average time that 
individuals remain in compartment I is equal to 1/γ. The 

rate of new infections can be defined as βI with a contact 
rate β. (see Figure 1). The parameter values for β and γ are 
determined from field data or through literature review.

Practical application and extensions of the SIR model

The basic SIR model assumes a uniform population and 
homogeneous mixing with no demographics. For most 
epidemics this is unrealistic and a simplification of real 
epidemic spread. Nevertheless it can for instance be 
applied to viral epidemics of which the time scale is 
much shorter than the time scale of births and deaths, 
conferring immunity to individuals after recovery 
(e.g., measles and influenza) (Keeling & Rohani, 
2008). Furthermore, SIR models can be relatively easy 
adjusted to account for demographic turnover when 
this becomes important, e.g., for HIV given the long 
epidemiological time scale of AIDS. Despite limita-
tions, the basic SIR model can lead to potent qualitative 
results and often serves as a basis to (understand) more 
complex models or to gain analytical insights into the 
behavior of models, e.g., threshold analysis (Hethcote, 
2000). Although basic SIR models can generate qualita-
tive insights in the dynamics of infection and immunity 
and their effect on epidemic patterns, they are not use-
ful to determine quantitative effects of, e.g., interven-
tion strategies on the course of an epidemic.

Depending on the nature of the viral outbreak or 
epidemic and the purpose of the model, more com-
partments reflecting different states of the infection 
process, e.g., exposed (E) or passive immune (M), may 
be added to the model structure. By this way a series of 
conventional deterministic compartment models have 
been introduced over the last century and successfully 
applied ever since. Commonly used acronyms and 
extensions of basic SI, SIS and SIR models are SEIR, 
SEIS and MSEIRS (Hethcote, 2000; Keeling & Rohani, 
2008). The simplest SI model (referred to as the ‘simple 
epidemic’) can capture infection where no recovery is 
possible (e.g., early stages of the HIV/AIDS epidemic). 
The SIS model can deal with infection where recovery 
is possible and where recovered hosts are immediately 
susceptible without immunity from reinfection (e.g., 
common cold viruses). In the SIR model recovery 
is possible with lifelong immunity from reinfection. 
The SEIR model incorporates an E compartment for 
the time period during which individuals have been 
infected but are not yet infectious, i.e., the time from 
infection to infectiousness (e.g., childhood viral dis-
eases such as measles and rubella). The MSEIR model 
incorporates a state M where hosts, e.g. infants, have 
passively acquired (maternally derived) immunity for 
the first months of life before becoming susceptible 
(e.g., measles).

ds

dt
SI

dI

dt
SI l

dR

dt
l



  

 

b

b g

g

Figure 1. Flow chart of the basic SIR model. Boxes represent the differ-
ent epidemic states or compartments. Arrows indicate the movement or 
flow between the compartments. The flowchart can be translated into 
the accompanying set of differential equations as displayed in the text.
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Addition of realism and complexity

Disease transmission in real populations often involves 
complex social and spatial structures characterized by 
heterogeneity in contact networks and accordingly in 
the impact of control measures (Colizza et al., 2007). 
To add realism and more detail, newer generations of 
models include additional compartments or subclasses 
representing e.g. age structure, social behavior, socio-
economical demographics, spatial elements, and/or 
control strategies such as quarantine and isolation. 
Inclusion of more elements of complexity requires 
more parameters, variables, and detailed assumptions 
about the nature of the underlying processes and tends 
to introduce more unknown parameters. This inevitably 
introduces stochastic heterogeneity and uncertainty and 
often involves the transition from deterministic to sto-
chastic or individual- and network-based approaches. 
More complex models usually require numerical solu-
tions (to differential equations) or stochastic simulations 
for analysis (see below) (Koopman, 2005). It should be 
mentioned that conceptually more complex models are 
not necessarily mathematically more difficult to resolve. 
The use of more complex and detailed models generally 
leads to greater resolution and accuracy of modeling 
results which is necessary for, e.g. control policy guid-
ance (Keeling & Rohani, 2008). However, the use of 
more simple models may be sufficient for gaining, e.g., 
insights of general infection dynamics. Thus depending 
on their purpose and preciseness or generality of the 
questions to be answered, models can vary in the level 
of detail they incorporate. A trade-off exists between 
simplicity, the absence of details, and whether inclu-
sion of additional parameters and complexity will lead 
to improvement of predictive power (Koopman, 2005). 
When little is known of the disease and its param-
eters and parameter values, the use of simple (basic 

deterministic compartmental) models may represent 
an effective tool as an initial step. Subsequently, more 
complexity can be added to suit the model’s purpose 
and the questions to be answered (Arino et al., 2006). 
However, the lack of data as such does not justify model 
simplicity or preclusion of analysis using more realistic 
assumptions.

Deterministic versus stochastic models

Although deterministic compartmental models form 
the basis of mathematical modeling, they are based 
on assumptions that are usually epidemiologically 
unrealistic as aforementioned. Typically individual 
hosts differ in susceptibility to infection and infectivity 
and are usually part of structured and heterogeneous 
populations. In addition, susceptibility and infectivity 
can be affected by age, gender, genetic, physiological 
and social differences, immune and vaccination his-
tory, and infection control measures (Boëlle, Cesbron, 
& Valleron, 2004; Kwiatkowski, 2005; Lloyd-Smith et al., 
2005; Quinn & Overbaugh, 2005; Woolhouse et al., 
1997). Therefore heterogeneities in host populations 
can affect the dynamics of infection. As viral transmis-
sion between individual hosts is stochastic by nature, 
deterministic models can become too elementary to 
describe a complex viral outbreak as they do not take 
into account chance events. Deterministic models pro-
duce a single output result per scenario for each set of 
expected or average input parameter values. Therefore 
they are not useful for small and non-homogenous 
populations. Additionally they are not useful to capture 
extreme variation and dynamics that can be inherent 
to viral infection, persistence, and extinction as often 
witnessed at the beginning or end of an epidemic. An 
example of unusual dynamics is “superspreading” as 
observed during the, 2003 SARS epidemic (Galvani & 
May, 2005). Despite such limitations to capture and 
resolve population structures and other heterogenei-
ties at the individual level, deterministic models have 
been shown to be useful and of predictive value for, 
e.g., establishing factors affecting the epidemic growth 
rate and for estimations of the final size of epidemics 
(Anderson & May, 1991; Mollison, Isham, & Grenfell, 
1994). Although some deterministic models can incor-
porate spatial elements, in most cases they are non-
spatial. In general, they are more suited to capture and 
describe the overall pattern of infection dynamics or to 
model separate stages of an epidemic (Daley & Gani, 
1999).

Models which take chance and variability into account 
are known as probabilistic or stochastic. Analogous to 
compartmental deterministic models, stochastic mod-
els also divide host populations into compartments. 
However, the infection process is described using 

Table 1. Values of the basic reproduction number R
0
 for various viral 

diseases.

Disease R
0

REFERENCE

1918 Spanish Flu 1.5-3.5 (Mills, Robins, & Lipsitch 
2004)

2009 pandemic 
influenza

1.4-1.6 (Fraser et al. 2009)

AIDS 1-6 (http://www.who.int/hiv/
strategic/en/wpraids2001.
pdf )

Foot-and-mouth 
disease

3.5-4.5 (Ferguson, Donnelly, & 
Anderson 2001) 

Influenza (seasonal) 0.9-2 (Chowell, Miller, & Viboud 
2008)

Measles 16-18 (Anderson & May 1991)

Polio 5-7 (Dowdell et al. 2001)

SARS 2-4 (www.who.int/csr/sars/en/ 
WHOconsensus.pdf )

Smallpox 3.5-6 (Gani & Leach 2001)
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discrete numbers and variables and process rates have 
been replaced by process probabilities (Isham, 2005). 
Stochastic models incorporate chance variation in expo-
sure risks, disease transmission, and other (heterogene-
ous) factors within and between individual hosts of a 
certain population. Stochastic models are best applied for 
small populations, e.g., during the early and late phases 
of an epidemic when chance fluctuations or heteroge-
neities have to be accounted for in the model structure. 
The models are characterized by a probability distribu-
tion of all possible outcomes of the infection process 
of which the value of input parameters vary (Daley & 
Gani, 1999). In addition the occurrence of chance events 
is randomized. Therefore different values for the same 
input parameters are run on a computer to produce a 
range of outcome-based probabilities and confidence 
intervals for (both statistical and uncertainty) analysis. 
The methodology that is used for estimating parameters 
from sampling probability distributions (based on con-
structing a Markov chain) for this purpose is known as 
Markov chain Monte Carlo (MCMC) simulation (Daley & 
Gani, 1999). The use of MCMC methods and alternative 
computer-intensive methods for analysis of stochastic 
epidemic models is becoming more widespread (Gibson 
& Renshaw, 2001; O’Neill, 2002). Stochastic models can 
be hard to construct and to obtain useful results many 
simulations are usually necessary requiring computa-
tionally intensive methods for analysis (Isham, 2005). 
Such models can become mathematically very com-
plex. In the past complexities that are associated with 
fitting stochastic models to epidemiological data to 
estimate transmission parameters, have limited their 
use. However due to modern statistical methods and 
computational power such models are now increasingly 
used (Matthews & Woolhouse, 2005).

Parameterization of models

The main input to epidemic models requires descrip-
tive data of the natural history of the disease and is 
commonly based on assumptions on the distributions 

of time periods. Depending on the disease these include 
incubation times, latency times, infectious times and 
infectiousness (Giesecke, 2002). These are parameters 
or concepts (epidemiological determinants) that are 
related to the course and progress of disease within indi-
vidual hosts and the time they spend in different states 
before proceeding to the next as illustrated in Figure 2. 
The proper estimation and use of these parameters is 
essential as it determines model outcomes. Moreover it 
provides insight into the transmission dynamics of the 
disease and can guide infection control policy (Anderson 
& May, 1991). This is in particular important at the begin-
ning of an outbreak or epidemic when swift appropriate 
action regarding containment must be taken. Parameter 
values are usually assessed from surveillance data. In 
the best case estimations may be retrieved from useful 
contact-tracing field data but this can be difficult and 
may not always be feasible. In general obtaining field 
data is not an easy task and may be affected by hetero-
geneities in disease transmission or hampered in case 
of e.g. rapidly spreading viral diseases such as influenza. 
Alternatively, for retrospective analysis in light of pre-
paredness and mitigation planning, historical data from 
past outbreaks or epidemics can be used to estimate 
parameters and parameter values. In the following sec-
tion key parameters and concepts that are commonly 
used are discussed.

The basic reproduction number R
0

Central to the parameterization of epidemic math-
ematical models is the basic reproduction number 
R

0
. This key epidemiologic variable characterizes the 

transmission potential of a disease within a popula-
tion. R

0
 is defined as the average number of secondary 

cases generated by an initial single infectious case in a 
totally susceptible population in the absence of infec-
tion control measures (Anderson & May, 1991). R

0
 has 

a so-called threshold value that equals 1. In general, 
it is assumed that if R

0
≥1 then an outbreak will lead 

to an epidemic. If R
0
<1, an outbreak will fade out. R

0
 

provides a basis for comparing transmission potential 

Figure 2. An illustration of relevant disease states, time periods, events and disease status and their relationship to the course of infection and 
disease within an individual host. The different states of disease are boxed (Compiled from Daley & Gani 1999; Aragon 2004 (http://www.idready.
org/slides/conducting-investig.pdf )).

Disease states

Time of infection Infection transmissible

Incubation period Symptomatic period

Infection non-transmissible

Status:
Immune/Carrier

Recovered/Dead

Recovered/Removed/Dead TimeSusceptible Latent period Infectious period

Events:
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between different viruses and other infectious diseases. 
Estimated values for R

0
 for various viral diseases are 

shown in Table 1. R
0
 does however have limitations. 

For a particular disease R
0
 is not a fixed property but 

defined for a certain host population governed by a 
specific contact (behavioral) pattern, duration of infec-
tiousness, and probability of transmission: for the same 
disease different populations may be associated with 
different values of R

0
. Furthermore, R

0
 is a dimension-

less quantity that can provide an indication of the risk 
of an epidemic as well as the intensity of measures 
needed for infection control (Heffernan, Smith, & Wahl, 
2005). Under the assumption of homogenous mixing 
the basic formula for R

0
 is defined as R

0
 = βcD in which 

β is the likelihood of transmission per contact: c is the 
number of contact per time unit and D is the average 
duration of infectiousness (Dietz, 1993). These different 
parameters can be altered by applying control meas-
ures. Mathematical models can be used to estimate 
R

0
 (from modeling transmission). This is however not 

straightforward and modeling context dependent and 
many different approaches and methods exist for this 
purpose (see below). Additionally, mathematical mod-
els can be used to identify factors in controlling viral 
spread by examining the effect on R

0
.

The efficacy of infection control measures can be 
measured in terms of the ability to reduce R

0
 to a value 

below 1. When an infection is spreading it is more 
convenient to use R

t
 (or R), the effective reproduction 

number, which is defined as the actual average number 
of secondary cases per primary case at time t during 
the epidemic. The value of R

t
 is usually smaller than 

the value of R
0
 reflecting the impact of infection control 

measures or build-up of immunity. For a homogenous 
population R

t
=fR

0
 applies, in which f is the propor-

tion of susceptible individual hosts at time t (Bauch 
et al., 2005). Several methods have been developed to 
determine R

t
 during an epidemic (Heffernan, Smith, 

& Wahl, 2005; Cauchemez et al., 2006). Both R
0
 and 

R
t
 are often expressed as combinations of parameters 

describing SIR model transmission dynamics and then 
estimated by fitting models to epidemiological data. 
However, the estimation of R

0
 or R

t
 is not straightfor-

ward (Roberts & Heesterbeek, 2007; Breban, Vardavas, & 
Blower, 2007). Estimating R

0
 or R

t
 can become  complex 

when models account for more heterogeneity (Hyman 
& Li, 2000). Recently, prompted by the current new 
influenza A (H1N1) virus pandemic, more recent (and 
elaborated) approaches and methods estimating the 
(basic) reproduction number have been published 
(Fraser et al., 2009; Boëlle, Bernillon, & Desenclos, 2009; 
Silva et al., 2009; http://ecdc.europa.eu/en/activities/
sciadvice/Lists/ECDC%20Reviews/ECDC_DispForm.
aspx?List=512ff74f-77d4-4ad8-b6d6 bf0f23083f30&ID=
641&MasterPage=1&PDF=true).

The generation time

The generation time is another important parameter 
which is usually defined as the average time necessary 
for secondary cases to become infected (Svensson, 2007). 
In concert with R

0
, the generation time can provide a pic-

ture of the dynamics of the epidemic over time. Although 
methods have been developed, estimating the generation 
time is not straightforward (Wallinga & Lipsitch, 2007; 
Kenah, Lipsitch, & Robins, 2008). As the generation 
time refers to actual infection events that are usually not 
observable, in practice the serial time is used as a proxy 
(Scalia Tomba et al., 2009). The serial time is defined as 
the time between the onset of symptoms in an index 
case and a secondary case (Svensson, 2007). Together, 
the generation time and R

0
 can provide a rough indica-

tion for the speed by which control measures should be 
implemented: a viral disease that has a small generation 
time and a moderate to high R

0
 (R

0
: 10–15) is likely to 

spread before infection control measures are put into 
place as for less infectious diseases (R

0
: 2–10) that have 

a larger generation time (>20 days), the timely use of 
appropriate control measures can be sufficient to achieve 
containment provided the viral outbreak is detected early 
(Anderson et al., 2004).

Infectious period

The infectious period or duration of infectiousness is 
defined as the time period during which contact with an 
(symptomatic or asymptomatic) infected host may lead 
to an infection (Barreto, Teixeira, & Carmo, 2006). During 
this time infected hosts can transmit the viral disease, 
shed the virus into the environment and susceptible 
hosts can become infected. This probability depends on 
the clinical manifestation of the disease, route of trans-
mission, concentration of virus shed, population density, 
and social behavior of both infected and non-infected 
hosts (Fine, 2003). Estimation of this time period requires 
detailed contact-tracing or shedding data. Obtaining 
good estimates for the incubation period may be com-
promised as the timing of the infection event and the 
timing of disease onset may be difficult to retrieve (Fine, 
2003). The infectious time determines the time course of 
the infection pattern and is of importance for, e.g., isola-
tion and quarantine policies.

The incubation period

The incubation period is defined as the time from infec-
tion to the onset of clinical symptoms (Giesecke, 2002). 
The length of the incubation period is influenced by 
determinants such as age, infectious dose, host genet-
ics, and immune status of individual hosts (Fine, 2003). 
Therefore the incubation period for any disease is not a 
fixed number but is represented by an interval. During 
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this period infected hosts can be infectious. The incuba-
tion time influences the generation time as it influences 
the timescale of the development of the epidemic. Early 
estimation of this parameter during a newly emerging 
disease provides insight into the mechanisms of disease 
transmission and into the type of control measures to 
implement (Tam & Wong, 2007; Lessler, 2009). Knowledge 
of the incubation period is of importance for contact trac-
ing and quarantine policies.

The latent period

The latent period is defined as the time from infection to 
acquisition of infectiousness (Fine, 2003). This time inter-
val is difficult to measure as infection transmission events 
are seldom observed and (shedding) data is hard to col-
lect. Nevertheless its importance as a key epidemiological 
determinant has been demonstrated (Wearing, Rohani, 
& Keeling, 2005). Fitting models to initial outbreak data 
without taking the latent period into account or without 
incorporating realistic assumptions of the latent and 
infectious period, will lead to an underestimation of 
the transmission potential (R) of the infection. With the 
incubation period, the latent period supports estimation 
of the (theoretical) efficacy of control measures against 
symptomatic individual hosts (Fraser et al., 2004).

The proportion of transmission prior to symptoms θ

This relative new parameter, denoted as θ is the propor-
tion of asymptomatic infections that occurs prior to the 
onset of symptoms. This parameter gives an indication 
of the efficacy for symptom-based (simple) public health 
measures such as isolation of symptomatic individuals 
and tracing and quarantining of their contacts (Fraser 
et al., 2004). Estimations of θ can indicate whether 
nosocomial transmission should be included in the 
mathematical model (Bauch et al., 2005). Transmission 
will be more widespread for diseases with a large θ. In 
such cases quarantine of pre-symptomatic individuals 
would be more effective to prevent an epidemic then 
isolation or contact tracing. Small θ values implicate 
a more important role for nosocomial transmission in 
transmission dynamics as individuals become infec-
tious after displaying symptoms and being hospitalized. 
In such cases early quarantine would be less effective 
(Bauch et al., 2005).

Network, spatial, and metapopulation 
models

Heterogeneity in disease transmission dynamics at the indi-
vidual level can significantly influence disease dynamics at 
the population level which has implications for infection 

control policy (Keeling & Eames, 2005). Disease transmis-
sion often occurs through populations via contact networks 
that are formed by physical contacts between individual 
hosts. The patterns of these contacts are heterogeneous, 
involve various (specific) types of interactions, and can 
cross social structures, physical locations and different 
spatially geographical locations. Therefore mathematical 
epidemiologists are increasing utilizing individual- and 
network-based epidemiology for modeling disease spread. 
Such models explicitly consider population and spatial het-
erogeneity, which cannot be captured by ‘homogeneous-
mixing’ compartment models, incorporating stochasticity 
(Bansal, Grenfell, & Meyers, 2007). They are best applied 
when behavioral characteristics of individuals regarding, 
e.g., ‘mixing’ behavior and migration have to be accounted 
for. Such models usually require detailed empirical data 
input and may be difficult to construct. Commonly used 
types such as contact network, spatial and metapopulation 
models are addressed below.

Contact network models

In contact network models, not only the properties of 
individual hosts but also the nature of the network of 
connections between them determine the course of 
an epidemic (Bansal, Grenfell, & Meyers, 2007). These 
models commonly consider disease spread by close 
contact and not transmission related to geographical 
space (Parham & Ferguson, 2006). Different approaches 
of contact network models include micro-simulation and 
agent-based models in which individual hosts reside in, 
e.g., the household, schools and workplaces to form con-
tact networks (Ferguson et al., 2005).

Spatial models

Explicit spatial models are used to account for behavior 
of individual hosts with regard to (geographical) space 
and movement (migration and mixing patterns). This 
may involve capturing both disease dynamics at a large 
geographical scale as well as on a more local scale where 
transmission patterns between individuals are defined 
by a contact network-like structure (Keeling et al., 2001; 
Lipsitch et al., 2003; Eubank et al., 2004). Spatially explicit 
models are useful for, e.g., evaluating the effects of move-
ment control measures or (local) contact tracing. Spatial 
models have been used for modeling disease dynamics 
and effects of control measures in both human and ani-
mal populations, e.g., pandemic influenza and Foot-and-
mouth disease (FMD) (Riley, 2007).

Metapopulation models

Human populations are often structured in communities 
that represent geographical locations, subpopulations or 
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‘patches’ such as cities (Leibold et al., 2004). A metap-
opulation is a group of subpopulations each with their 
own dynamics. Within a metapopulation framework the 
spread of the viral disease is usually modeled within a 
subpopulation or alternatively between subpopulations 
(Colizza & Vespignani, 2007). For this purpose several 
approaches and methods exist. In general, the models rely 
on spatial structure of the environment and knowledge 
of transportation infrastructures and movement patterns 
(Colizza & Vespignani, 2007). Metapopulations are usu-
ally complex and hard to build as they aim for increasing 
model realism and therefore inclusion of many details. 
Nevertheless metapopulation models are regarded as a 
compromise between the use of simple compartment 
models and detailed complex contact network models. 
They are best used when the population structure has a 
known large influence on spreading patterns and trans-
mission dynamics (Grenfell & Harwood, 1997).

Mathematical modeling of human and 
 animal viral diseases: FMD, SARS, and 
 pandemic influenza

Mathematical modeling of viral disease has become an 
important tool for public and animal health authori-
ties to understand a viral disease outbreak and to for-
mulate and implement infection control policies. The 
prevention and control of disease transmission can be 
achieved by a variety of both nonpharmaceutical as 
pharmaceutical interventions such as isolation, quar-
antine, contact tracing, movement and travel restric-
tions, culling (restricted to animal diseases), and the 
use of vaccines or antiviral drugs. In this section we 
discuss relevant modeling literature of the 2001 UK 
FMD outbreak, the 2003 SARS global epidemic and 
future influenza pandemics. We address the utility of 
mathematical models in providing information on the 
course of the epidemic, their (predictive) value in con-
trolling the epidemic and contribution to policy and 
decision making.

The 2001 UK foot-and-mouth disease (FMD) outbreak

The 2001 UK FMD epidemic devastated the livestock 
industry and caused severe economical damage (Kao, 
2003). Although FMD does not directly affect human 
health the 2001 UK outbreak exerted significant social 
pressure by disrupting (local) economies (Bender, 
Hueston, & Osterholm, 2006). The viral disease exempli-
fies the strong relationship between animals and humans 
as humans that come in contact with infected animals 
can serve as mechanical vectors. Foot-and-mouth dis-
ease virus (FMDV) is a highly transmissible virus. The 
virus infects many cloven-footed mammals including 

sheep, cattle, pigs, and goats (Alexandersen et al., 2003). 
The virus is spread in droplets from infected to in-contact 
animals, by feeding animals with infected products and 
by mechanical spread through fomites. The incubation 
period can last 3–11 days including a presymptomatic 
phase during which the animals are infectious. The virus 
has the potential of air- and windborne transmission 
over long distances which require particular (climatic) 
circumstance (reviewed in (Sobrino et al., 2001) and 
(Moutou, 2002)). The, 2001 FMD epidemic was primarily 
restricted to sheep and cows. Different antigenic types of 
the virus that consist of multiple strains exist in different 
parts of the world. It is assumed that the particular viru-
lent FMDV type O Pan Asia strain entered the UK via ille-
gally imported contaminated food products (Rossides, 
2002). Over the course of the epidemic animals on 9900 
premises (including over 7500 that were not infected) 
were culled including 3.3 million sheep, 500000  cattle, 
143000 pigs to bring the epidemic to a halt (http://www.
defra.gov.uk/footandmouth/). With an additional 2.5 
animals culled on welfare grounds, the total number 
of animals culled was about 6.5 million (Scudamore 
& Harris, 2002). Current control policies in Europe are 
based on strict import and quarantine regulations as 
routine vaccination ended in, 1994 (Council Directive, 
2003/85/EC). In general, the execution of control poli-
cies regarding FMD is complicated due to the variation 
in the severity of the disease, display of symptoms, the 
duration and level of infectiousness, and excretion 
among different target animal species (Donaldson & 
Alexandersen, 2001; Donaldson et al., 2001). Within 
weeks after the, 2001 UK outbreak, infection control was 
compromised by the extent of the outbreak (Kitching, 
Thrusfield, & Taylor, 2006). The initial applied tradi-
tional “stamping out policy,“ i.e., the culling of infected 
premises together with animals at premises classified 
as “dangerous contacts“ proved to be inadequate. It 
should be noted that there was an initial delay before 
the suspected disease was reported and positively con-
firmed (http://www.defra.gov.uk/footandmouth/). As 
a result when the outbreak was officially confirmed on 
February 20th the disease had already spread. To guide 
UK government policy during the epidemic, a number 
of mathematical models were developed by different 
teams of mathematical modelers. This was one of the first 
examples of computer-based (predictive) mathematical 
modeling in the UK and in the rest of the world for this 
purpose. The models ranged from a deterministic differ-
ential equation model with inclusion of spatial variables 
(Ferguson, Donnelly, & Anderson, 2001a; Ferguson, 
Donnelly, & Anderson, 2001b) to the use of a spatially 
detailed complex micro- simulation model (Morris et al., 
2001) and a spatially explicit Monte Carlo computer 
simulation (Keeling et al., 2001). The different modeling 
approaches and techniques used have been described 
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and compared in detail elsewhere (Keeling, 2005). All 
models were based on the same data with the aim to 
identify containment strategies to minimize the size and 
the length of the epidemic. Despite the differences in 
approaches, the models made similar predictions about 
the type of control that was needed to stop spread of the 
disease: a more intensive culling strategy was needed 
as the epidemic had gone out of control. Based on these 
models policy was revised and the “24/48” policy of con-
tiguous culling without vaccination was implemented: 
in addition to rapid culling of susceptible animals on 
confirmed infected premises (IPs) and premises con-
firmed as dangerous contacts (DCs) within 24 hours of 
reporting, rapid culling on premises contiguous to IPs 
(CPs) and DCs within 48 hours after reporting (known 
as “pre-emptive culling”) was implemented. The estima-
tion of R

0
 has proven to be of importance for taking on 

the revised culling policies. For the UK setting R
0
 was 

defined as the average number of farms infected by one 
farm in a totally susceptible population of farms. One 
modeling team derived a R

0
=4.5 that was reduced to 

R=1.6 after inclusion of control measures (movement 
restrictions) (Ferguson, Donnelly, & Anderson, 2001a). 
Interestingly, although the study showed that culling 
all animals within 24 hours after case reporting would 
significantly slow down the epidemic, R was not reduced 
below one indicating the necessity of more intensive 
control strategies. The pre-emptive culling policy was 
thought to be crucial in bringing the epidemic eventually 
to an end in September 2001 (Woolhouse et al., 2001). 
However, the revised policy caused criticism and con-
troversy over the decision to rely on pre-emptive culling 
as the sole option as it led to the destruction of many 
healthy animals (reviewed in (Sutmoller et al., 2003). 
This led to an inquiry ordered by the UK government 
into the lessons to be learned (http://www.defra.gov.uk/
footandmouth/). In addition the modeling approaches 
have been scrutinized and re-evaluated and the models’ 
appropriateness, validity, and predictive value to guide 
policy were questioned (Haydon, Kao, & Kitching, 2004; 
Kao, 2002; Rossides, 2002). Some of the criticism involved 
the quality of data and epidemiological knowledge that 
were used for model building and parameterization, in 
particular regarding viral transmission characteristics, 
distribution of initially infected farms and livestock and 
target species involved (Kitching, Thrusfield, & Taylor, 
2006). In addition, retrospective analysis implied that the 
predictive power of the models (regarding both trans-
mission dynamics and the effect of control measures) 
had been affected by two major forms of heterogeneity 
(Green & Medley, 2002; Woolhouse, 2003). First, spatial 
heterogeneity was caused by a rapid depletion in the 
number of susceptible animals around an infected farm. 
Second, heterogeneities were caused by differences in 
the composition of livestock between farms. In addition 

FMD transmission dynamics was subject to spatial 
and temporal heterogeneities caused by variations in 
weather conditions and farming practices. This resulted 
in epidemic parameters that varied in time and space as 
the epidemic changed geographically. Probably model 
misspecification compromised translating modeled 
predictions to control policies as the models’ validity 
became influenced by spatial and temporal variation in 
transmission dynamics.

In conclusion, the 2001 UK FMD epidemic was the 
first time that real-time predictive mathematical mod-
eling influenced crucial decisions, driving control poli-
cies to end the epidemic. Mathematical modeling was 
a new analytical tool to policy and decision makers at 
the time. During and after the epidemic the appropri-
ateness of the models was questioned, suggesting that 
the adopted revised control policies had resulted in 
unjustified excessive culling of uninfected animals. In 
hindsight however, the models’ predictions generally 
appeared to be correct and the implementation of the 
revised control policies led to a halt of the epidemic 
(Woolhouse et al., 2001; Kao, 2002; Chis Ster, & Ferguson, 
2007; Tildesley et al., 2008). Furthermore, the models all 
provided useful and important insights for policy mak-
ers into FMD transmission dynamics in real time during 
the epidemic both qualitatively and quantitatively. Some 
controversy still exists over whether different strategies 
would have resulted in a better epidemic control, in 
particular regarding the number of culled animals (Kao, 
2003; Honhold et al., 2004; Taylor et al., 2004, Kitching, 
Thrusfield, & Taylor, 2007). The 2001 UK FMD outbreak 
emphasized the importance of accurate data input and 
model validation in order for models to be used as a reli-
able tool in support of policy decisions but not as a sub-
stitute for policy making (Green & Medley, 2002; www.
defra.gov.uk/science/documents/publications/2003/
UseofModelsinDiseaseControlPolicy.pdf; Kitching, 2006; 
Kitching, Thrusfield, & Taylor, 2006). It highlighted diffi-
culties, complexities and (future) challenges with regard 
to capturing spatio-temporal variation of infection 
dynamics and the necessity for the development and 
use of rigorous modern statistical methods to estimate 
parameters (Chis Ster, & Ferguson, 2007). Importantly, 
it demonstrated the usefulness and potential of mathe-
matical modeling for retrospective analysis, contingency 
planning and policy development. This gave incentive 
for (further) development and improvement of new and 
existing models and approaches (Keeling, 2005; Parham, 
Singh, & Ferguson, 2008: Tildesley et al., 2009; Tildesley 
et al., 2009).

The 2003 SARS global epidemic

The 2003 outbreak of sever acute respiratory syndrome 
(SARS) is an example of how rapidly a new viral infectious 
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disease can spread in a globalized world. The 2003 SARS 
epidemic was caused by a newly identified coronavirus 
SARS-CoV resulting from cross-species transmission 
from civet cats or raccoon dogs on open food markets 
that are associated with the selling of live animals out in 
the open, so-called “wet markets” (Poon et al., 2004). The 
virus originated in the province of Guangdong, Republic 
of China causing more than 8000 infections affecting 29 
countries worldwide, resulting in approximately 800 
deaths. Within one month after its recognition SARS 
spread across the world causing epidemics in China, 
Hong Kong, Taiwan, Vietnam, and Canada (http://www.
who.int/csr/sars/country/table, 2004_04_21/en/index.
html). As SARS became a global hazard the World Health 
Organization (WHO) initiated a worldwide campaign to 
combat SARS. In the absence of a diagnostic test, prophy-
laxis therapy, or vaccines the epidemic was eventually 
relatively quickly controlled fast in July 2003 using tradi-
tional or non-medical public health infection control 
measures (Bell, 2004). These measures varied from one 
geographical location to another. They included the rapid 
identification and isolation of cases and tracing and quar-
antining of their contacts, community-related measures 
to increase social distances such as cancellation of mass 
gatherings and closing schools, travel restrictions regard-
ing domestic and international travel by issuing travel 
advisories and fever surveillance on, e.g., airports, and 
recommendations to the public for improved personal 
hygiene and the use of personal protective equipment 
such as masks (Poutanen & McGeer, 2004; Bell, 2004). 
Some of these measures were implemented consistent 
with WHO recommendations. Others were implemented 
by authorities and public health officials on their own 
initiative (Bell, 2004). SARS-CoV is primarily transmitted 
by respiratory droplets and close contacts are important. 
Transmission through contaminated environmental sur-
faces and fomites may also have played an important role 
(Poutanen & McGeer, 2004). Still, the exact patterns of 
transmission of the SARS virus remain an enigma (Krilov, 
2004). Remarkably, more than 57% of all reported cases 
of SARS worldwide acquired the infection in a hospital 
setting. Health care workers constitute approximately a 
third of these cases (Lee & Sung, 2003). This indicated 
that the virus was unable to establish and to maintain 
itself within the community at large (Low & McGeer, 
2003). SARS did not become communicable before the 
onset of symptoms and infectivity of the virus increased 
as patients became more ill. For SARS an incubation time 
of 4–7 days has been determined. This was followed by 
the onset of symptoms for 1–15 days (Krilov, 2004). 
Despite a worldwide susceptible population SARS did not 
result into a pandemic. The SARS epidemic was eventu-
ally effectively controlled as a result of an almost simul-
taneously implementation of multiple infection control 
measures in the countries that were affected. The timely 

and vigorous use of isolation and quarantine measures 
that restricted movement and limited contact mixing 
proved to be crucial (Anderson et al., 2004; Baric, 2008). 
The effectiveness of this policy was supported by the fact 
that the onset of symptoms preceded infectiousness of 
patients. While the epidemic was unfolding (in the early 
to mid stages) two different research groups developed 
mathematical models to predict whether the epidemic 
would evolve into a pandemic and to evaluate control 
measures. The first group determined R

0
 for SARS for data 

in Hong Kong, Singapore, and Canada using both a deter-
ministic and stochastic compartmental model (Lipsitch 
et al., 2003). An R

0
 ranging from 2.2–3.6 was estimated for 

the deterministic approach. A wide range of 1.5–7.7 with 
an expected value of 3.5 was derived for R using a sto-
chastic approach. This variation was likely due to effects 
of heterogeneity in transmission dynamics. The second 
group using a stochastic metapopulation-compartmental 
model, derived an R

0
 for data in Hong Kong ranging from 

2.1–3.7 (Riley et al., 2003). A median value for R
0
 of 2.7 

was derived with exclusion of superspreading. These 
initial estimates for R

0
 were all above 1, but classified 

SARS as relative low to moderate transmissible, less 
transmissible than most respiratory infections and there-
fore potentially more susceptible to infection control 
measures (Pennington, 2004). Another ‘early’ study using 
a stochastic simulation model used a range of values for 
R

0
 corresponding to data for different cities (Lloyd-Smith, 

Galvani, & Getz, 2003). In this study quarantine and isola-
tion as control measures were evaluated with emphasis 
on data for Hong Kong using 3.0 for R

0
. All three (inde-

pendent) modeling studies implied that a combination 
of isolation and quarantine, contact tracing, improved 
infection control procedures, surveillance, or stringent 
hygienic procedures, would be effective in controlling 
spread provided they were implemented timely. 
Importantly, the results also implied that if left uncon-
trolled, the virus would infect the majority of the popula-
tion upon its entrance. These conclusions offered useful 
guidance for public health policies and WHO (http://
www.who.int/csr/sars/en/WHOconsensus.pdf ). 
Moreover these results supported public health policies 
such as isolation and quarantine already put in place in 
affected countries. The results were also viewed with 
some caution and called for vigilance for acceptance by 
policy and decision makers (Dye & Gay, 2003). The mod-
els were conceived as conceptually complex and field 
data used for these studies suffered (with varying degrees) 
from deficiencies (Donnelly et al., 2004; Dye & Gay, 2003; 
Heffernan, Smith, & Wahl, 2005). The early phases of an 
outbreak (in particular of a previously unknown viral 
disease like SARS) are often hindered by inaccuracies and 
incompleteness of data. At the time several aspects, 
parameters and parameter values of SARS such as mode 
of transmission, incubation time, infectivity, virulence, 
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and persistence were unknown or uncertain. Population 
heterogeneity is likely to have caused a substantial 
 variation of the estimates of R

0
. In addition, so-called 

superspreader events contributed to the observed 
 heterogeneities in transmission dynamics (Lloyd-Smith 
et al., 2005). Also spatial (geographical) variation in trans-
mission has contributed to this (Galvani, Lei, & Jewell, 
2003). Despite moderate values of R

0
 well above 1, the 

SARS epidemic did not develop into a pandemic. The 
observed discrepancy between the estimates of R

0
 and 

the epidemiology may have resulted from early imple-
mentation of infection control measures and intervention 
resulting in a decrease of R (Meyers et al., 2005). 
Interestingly, based on an R

0
 value of 2.2–3.6, a total of 

30000 to 10 million cases should have been expected in 
China (Meyers, 2007). At the end of the epidemic only 782 
cases had been reported suggesting a R

0
 of about 1.6 from 

SARS. Field data used for these early models were prima-
rily derived from hospital or closed community settings 
such as apartment buildings. However, outside of the 
hospital setting and with the exception of superspreading 
events, R

0
 has been shown to be less than 1 (Low, 2004). 

Most of the ‘early studies were based on homogeneous 
mixing’ compartmental models. It was therefore sug-
gested that population heterogeneity may not have been 
properly captured resulting in (biased) outcomes for R

0
 

not representative of the population at large (Meyers 
et al., 2005). During the epidemic an additional five stud-
ies regarding SARS transmission and the effect of infec-
tion control were published for data in Hong Kong, 
Beijing, Toronto, Singapore, and Vietnam (Chen, 2003; 
Lin, Jia, & Ouyang, 2003; Wang & Zhao, 2003; Chowell 
et al., 2003; Shi, 2003). These models predominantly con-
sisted of deterministic SEIR models considering key 
epidemic variables with respect to both public health and 
hospital based control measures and estimations of R. All 
the same, estimates of R in these studies grossly fell within 
the range of values mentioned for SARS above.

In conclusion, several generally considered state-of-
the-art models with different structures were developed 
during the 2003 global SARS epidemic to predict the 
effect of control measures, eliciting renewed interest in 
modeling human infectious diseases for this purpose. 
These studies were of great value to understand SARS 
transmission dynamics, informing control policies and 
strategies. They also offered the opportunity to compare 
models and explore the effect of model structure on pos-
sible outcomes. Estimated values for R

0
 derived from the 

early studies suggested that SARS was controllable and 
that a timely implementation of control measures was 
crucial to stop the epidemic. Considerable variation for 
R

0
 was found not only in early studies during the epi-

demic but also in modeling studies that were performed 
in retrospect after the epidemic (summarized in Bauch 
et al., 2005). This implies that the estimated R

0
 values 

depended on the model structures, input parameters, 
and on the methods used to estimate R

0
 (Donnelly et al., 

2004; Bauch et al., 2005). Moreover, in general the models’ 
predictive value seemed to considerably depend on their 
architecture, assumptions, the choice of epidemiological 
parameters and quality of field data (Wallinga, Teunis, 
& Kretzschmar, 2006; Pitzer, Leung, & Lipsitch, 2007). In 
addition transmission dynamics of SARS was complex 
and found to be subject to considerable heterogeneity 
in time and space, population heterogeneity, and geo-
graphical variation which may compromise the models’ 
predictive capacity (Chowell et al., 2003; Bauch et al., 
2005). This prompted the development and use of (more 
complex) models capable of capturing more detailed 
population (social) structure, temporal variability, and 
spatial heterogeneity to evaluate combinations of control 
measures (Colizza et al., 2007; Pitzer, Leung, & Lipsitch, 
2007; Cori et al., 2009). The unprecedented global spread 
of SARS demonstrated the importance of inclusion of 
spatio-temporal effects and geographical movement 
of individuals on a global scale and long-range trans-
portation (civil aviation) networks to understand and 
forecast worldwide geographical spread of epidemics 
(Hufnagel, Brockmann, & Geisel, 2004; Colizza et al., 
2007). The SARS epidemic also highlighted the need for 
models capable of evaluation of control measures in real 
time in case insufficient data is available regarding viral 
transmission characteristics and clinical features of the 
disease (Pourbohloul et al., 2005; Cauchemez et al., 2006; 
Hsieh et al., 2007).

Future influenza pandemics

During the last century we have been confronted with 
three pandemics, namely the, 1918 (“Spanish Flu”), 1957 
(“Asian Flu”), and 1968 (“Hong Kong Flu”) pandemic that 
resulted in millions of deaths worldwide (Poland, 
Jacobson, & Targonski, 2007). Analysis revealed that both 
the 1957 and the 1968 pandemics have been caused by 
reassortant influenza A viruses, containing a mixture of 
human and avian influenza genome segments (Horimoto 
& Kawaoka, 2005). Influenza pandemics are character-
ized by the worldwide spread of novel influenza strains 
for which most of the population lacks substantial immu-
nity. As a result such pandemic strains typically cause a 
significant increase in morbidity and mortality compared 
to common seasonal influenza epidemics (Monto & 
Whitley, 2008). Common seasonal influenza A epidemics 
result from the spread of antigenically new subtypes that 
are generated through small mutations (“antigenic drift”). 
Partial immunity due to previous infections by a similar 
subtype is thought to limit the size of these epidemics. 
Every few decades a subtype is generated through more 
substantial genetic changes, reassortment (“antigenic 
shift”), resulting in a pandemic (Nicholson, Wood, & 
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Zambon, 2003). We are now confronted with the recently 
emerged swine-originated new influenza A (H1N1) virus 
that is spreading globally (Flahault, Vergu, & Boëlle, 2009; 
Garten et al., 2009). Nevertheless the unprecedented 
spread of highly pathogenic avian influenza virus (HPAI) 
subtype H5N1 among birds and mammals in the past 
decade and hundreds of reported zoonotic transmissions 
directly from birds to humans with a high case fatality 
rate still warrants caution and the need for worldwide 
preparedness and mitigation planning (Monto & Whitley, 
2008). Cross-species transmission of HPAI H5N1 can 
potentially lead to the occurrence of a new influenza A 
pandemic through adaptive mutations and/or reassort-
ment with human influenza A virus (Peiris, de Jong, & 
Guan, 2007). Although H5N1 causes disease in human, 
the virus is yet not efficiently transmissible and sustain-
able among humans. However if such a virus would 
acquire the ability to transmit readily from person to 
person it could spread worldwide within months or 
weeks due to globalization and the rapidity and high 
frequency of modern transport such as international air 
travel (Gust, Hampson, & Lavanchy, 2001). Common 
seasonal influenza A virus is in most cases transmitted by 
droplets through coughing and sneezing of infected per-
sons but can also be spread by direct physical contact 
between individuals or by transfer to persons via fomites 
(Brankston et al., 2007). Future or new pandemic influ-
enza A viruses are thought to be transmitted in a similar 
way. Typically upon infection with seasonal influenza A 
virus, an individual has a short latent period of about  
2 days before becoming infectious for 2–3 days with shed-
ding starting a day before symptoms appear in case of a 
symptomatic infection (Carrat et al., 2008). Although the 
characteristics and origin of a new pandemic cannot be 
predicted WHO has recommended nations to prepare 
contingency plans (http://www.who.int/csr/disease/
influenza/pipguidance2009/en/index.html). Several 
countries have used mathematical models to predict the 
viral spread and to evaluate the feasibility to contain an 
influenza pandemic at the national level (e.g., http://
www.health.gov.au/internet/main/publishing.nsf/
Content/ mathematical-models). There are two types of 
strategies of prevention and intervention. 
Nonpharmaceutical measures include basic public 
health measures such as isolation and quarantine of sus-
pected cases, increased hygiene and use of protective 
devices such as masks (World Health Organization 
Writing Group, 2006). Pharmaceutical measures include 
vaccines and antiviral drugs (Hota & McGeer, 2007). In 
the event of a pandemic, control will be hampered by a 
limited vaccine supply at least during for the first wave, 
therefore multiple control measures have to be consid-
ered (Nguyen-Van-Tam & Hampson, 2003). Many mod-
eling studies have simulated pandemic spread and 
assessed intervention strategies for controlling pandemic 

influenza at both local and global levels based on histori-
cal data from the three pandemics of the last century. 
With its unprecedented estimated number of 50 million 
deaths worldwide (Johnson, 2002), the, 1918 pandemic 
serves as a worst-case scenario for pandemic planning. 
Several studies have estimated R

0
 for the, 1918 pandemic. 

One study using historical data from 45 cities in the 
United States estimated a median value for R

0
 of 2.9 for 

the 1918–1919 strain with a range of 1.5–3.5 (Mills, Robins, 
& Lipsitch, 2004). In another study using data from San 
Francisco, R

0
 was estimated 2.0–3.0 using four modeling 

approaches (Chowell, Nishiura, & Bettencourt, 2007). 
Values for R

0
 ranging from 2.6–10.6 and from 2.4–4.3 were 

determined for confined and community settings respec-
tively (Gani et al., 2005). Other studies estimated a range 
for R

0
 of 1.5–3 for both seasonal and pandemic influenza 

A (including 1957 and 1968 strains) (Longini et al., 1984). 
These results demonstrated that the reproduction 
number for the, 1918 influenza strain, was not large rela-
tive to other viral diseases like SARS, measles, or polio 
(Table 1). Several studies have also evaluated control 
strategies for pandemic influenza based on historical, 
1918 pandemic data. By fitting a deterministic SEIR 
model to historical data from 45 cities in the United 
States, one study estimated that a pandemic can be con-
trolled by public health interventions if these interven-
tions would be applied early (Mills, Robins, & Lipsitch, 
2004). By using an individually based spatially explicit 
simulation for data in Thailand, another study suggested 
that control would be feasible with the use of targeted 
antiviral therapy together with social distancing provided 
that R

0
 is below 1.8, the pandemic is detected within the 

first weeks of its emergence and control measures are 
implemented early (Ferguson et al., 2005). Another study 
using a stochastic simulation model for rural Southeast 
Asia, showed that for a R

0
 value below 1.6 the use of tar-

geted antivirals would have a high probability of control-
ling viral spread (Longini et al., 2005). For a value of 2.4 
for R

0
 viral spread became uncontrollable. However, 

when in the same study a R
0
 of 2.4 was used in scenarios 

evaluating combinations of targeted prophylaxis, quar-
antine, and pre-vaccination, control could also be 
achieved. In other studies it was demonstrated that the 
use of a pre-pandemic vaccine before or soon after the 
onset of a pandemic together with other control meas-
ures can be effective in reducing the clinical attack rate 
(Ferguson et al., 2006; Germann et al., 2006). These stud-
ies also modeled the impact of a variety of levels and 
combinations of antiviral agents, vaccines, and reduced 
social mobility at large scale within the United Kingdom 
and United States (including school closure and travel 
restrictions), demonstrating feasibility of reducing speed 
and magnitude of viral spread. A recent study focused on 
data for the United States, examined combinations or 
so-called targeted layered containment (TLC) of antiviral 
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therapy and prophylaxis and quarantine, isolation, school 
closure, community, and workplace social distancing for 
a range of R

0
 values (Halloran et al., 2008). The outcome 

of this study suggests that in the absence of a efficacious 
vaccine a timely implementation of a combination of 
targeted household antiviral prophylaxis and social dis-
tancing measures could reduce the clinical attack rate. 
Other recent modeling studies involved analyses of the 
occurrence of antiviral drug-resistant influenza strains, 
and the influence of air transportation between countries 
on viral spread and pandemic control. In the event of a 
pandemic the widespread use of antiviral drugs as a 
prophylaxis or on a therapeutic basis is likely to select for 
resistant influenza strains (Regoes & Bonhoeffer, 2006). 
Transmission of such strains could limit the effectiveness 
of these drugs as a first line of defense. Therefore to con-
strain the emergence and spread of resistant strains the 
use of two different types of antiviral drugs is advocated 
(McCaw et al., 2008; Lipsitch et al., 2007). Several studies 
addressed the importance of local control measures and 
air travel restrictions with regard to the influence of 
(international) air travel on the spread of a pandemic. 
The results of these studies suggest that such control 
measures are not likely to (substantially) delay the spread 
of a pandemic (Epstein et al., 2007; Colizza et al., 2006).

In conclusion, mathematic modeling has provided 
valuable insights in the dynamics of (past) influenza pan-
demics and the potential of (combination of) different 
intervention strategies. Depending on the modeling tech-
niques and assumptions made, variability for estimated 
values of R

0
 was found. In addition, sources of historical 

data differed from one study to the next. Past pandemics 
have varied considerably with regard to epidemiological 
characteristics, pathogenicity, virulence, and pre-existing 
immunity (Oxford et al., 2006). As a consequence current 
contingency planning based on mathematical models 
must consider the possibility that transmission dynamics 
of a future pandemic can differ substantially both tempo-
rally and geographically from previous pandemics (Mills 
et al, 2006; Smith, 2006). Nevertheless, modeling studies 
based on using historical data can offer useful insights 
of influenza dynamics to develop relevant intervention 
strategies and policies (Morse, 2007). The results derived 
from the different modeling studies should however be 
used with some caution and vigilance in (support of) pre-
paredness planning. Furthermore, given the unpredict-
ability and uncertainty of the characteristics of a future 
pandemic contingency planning will probably need 
constant re-evaluation and adjustment in real time as 
the pandemic progresses (Hall et al., 2007). Although it is 
now widely accepted that a combination of measures will 
be necessary to sufficiently control viral spread, precise 
planning may be hampered by key unknowns, uncertain-
ties and limitations as mentioned above. It should be 
mentioned that in light of H5N1 preparedness planning 

several countries have considered stockpiling antiviral 
drugs and pre-pandemic vaccines (based on a currently 
circulating strain of HPAI H5N1) for population  priming. 
Important questions however remain, for instance 
which combinations of interventions will be most 
 effective? or to what extent will asymptomatic  infections, 
the existence of pre-existing and waning immunity  
and/or antigenic drift affect spread and control meas-
ures? (Mathews et al., 2007; Ferguson, Galvani, & Bush, 
2003). This emphasizes the necessity to further develop 
models incorporating such aspects in scenario simula-
tions of multi-component strategies (Flahault et al., 2006; 
Halloran et al., 2008). Such simulations will provide 
further insight into the best ways to develop strategies 
and allow to choose and implement the most success-
ful control measures (Cooper et al., 2006; Colizza et al., 
2007). This also advocates further research and modeling 
studies with regard to the sources and spread of avian 
influenza, the contribution of contact structures such as 
workplaces and schools to the overall spread of influenza 
and the feasibility and effectiveness of social distancing 
measures (Flahault et al., 2006; Halloran et al., 2008).

Concluding remarks: implications for 
 translation to infection control policies

Mathematical modeling now plays an increasingly impor-
tant role in contingency and preparedness planning 
(“what-if” scenarios), risk assessment and policy and 
decision making. In addition mathematical models have 
become useful tools to analyze the underlying disease 
dynamics of epidemics in real-time as highlighted by the 
current new influenza A (H1N1) pandemic (http://www.
who.int/wer/2009/wer8434.pdf). Mathematical models 
can provide insights into infectious disease epidemiology 
and can be applied to evaluate the effects of infection 
control measures. Mathematical analysis can lead to the 
identification of important thresholds that determine 
whether, e.g., an outbreak will die out or will develop into 
an epidemic. When developing infection control policies, 
policy makers face different questions, trade-offs, and 
uncertainties that are associated with different strategies 
to implement to combat a viral outbreak or epidemic. In 
the past important decisions regarding trade-offs and 
implementation were primarily based on previous expe-
rience (from other countries) or the consensus opinion 
of expert scientific committees. Nowadays mathematical 
models and simulation of scenarios are increasingly used 
for this purpose.

In this review we discussed a number of studies with 
regard to (predictive) modeling of the course of the epi-
demic and evaluating various (combinations of) control 
measures of the 2001 UK FMD outbreak, the 2003 SARS 
global epidemic, and future influenza pandemics. It is 
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important that policy and decision makers that use the 
results of model prediction understand both the strengths 
and limitations of the models applied (May, 2004). As 
models are abstractions and simplifications of the real 
world the results they generate will always be approxi-
mations. The models are designed for particular situa-
tions using the information that is available and making 
assumptions where information is lacking and should 
therefore be used with some caution and vigilance. The 
assumptions can have a significant effect on the mod-
els’ outcomes, their interpretation and their predictive 
power (Wearing, Rohani, & Keeling, 2005; Drake, 2006). 
Because models are always based on some extrapola-
tion, uncertainty is to some level inherent to all models. 
Validation of the models by, e.g., ascertaining the quality 
of model fit to the observed data using statistical methods 
or by establishing the robustness of the conclusions by 
uncertainty and sensitivity analysis is therefore essential 
(Blower, 2004).

Properly constructed and well-parameterized models 
can be important and useful tools for infection control. 
Policy makers and public health officials should therefore 
be aware of their availability, potential, and the existence 
of a wide range of methods and approaches. The models 
can provide a basis for infection control measures which 
can be tested experimentally or empirically, e.g., predict 
the size and area spanning the epidemic so that resources 
and logistics can adequately be made available (Keeling, 
2005). As they provide quantitative understanding of 
disease dynamics, models can be used to suggest, select, 
and evaluate control policies by simulating scenarios. 
Furthermore, models can suggest criteria for the evalua-
tion of infection control measures not only by identifying 
key parameters but also by identifying uncertainties and 
gaps of knowledge of transmission dynamics. Infection 
is a stochastic process and viral epidemics often develop 
in a non-linear fashion characterized by complex epi-
demiology (Anderson & May, 1991). A variety of mod-
els exist ranging from very simple to highly complex to 
capture infection dynamics. The choice of model and 
its complexity is context and setting dependent and is 
largely determined by the type of disease, its purpose, and 
user. It should be mentioned that several “user-friendly” 
simple models are available for regulatory authorities to 
input data and observe the effects. These applications do 
not necessarily need experts to be used appropriately. 
However, it is clear from the modeling studies of FMD, 
SARS, and pandemic influenza discussed here, that mod-
els have evolved from simple compartmental models into 
complex approaches in which incorporation of, e.g., host 
population heterogeneities, greater individual variability, 
and spatial elements into the modeling structure have 
become more and more important. Addition of more ele-
ments of complexity increases realism which can lead to, 
e.g., greater accuracy of forecasts. On the other hand this 

inevitably introduces more parameters and thus uncer-
tainty. It is therefore important to achieve a right balance 
between model purpose, model complexity and model 
validation (Ferguson et al., 2003). Importantly, modeling 
results should be interpreted with acknowledgement 
of model assumptions and limitations. In support of 
informed decision making or control policy guidance, 
modeling results should therefore be critically approached 
and evaluated with some caution. As decisions can have 
important consequences and implications this should 
preferably take place in a multidisciplinary setting using 
appropriate expertise in amongst others mathematical 
modeling, epidemiology, veterinary and human medicine 
and policy making.
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