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Abstract
A brief description of the importance of communicable diseases in history and the development of
mathematical modelling of disease transmission is given. This includes reasons for mathematical
modelling, the history of mathematical modelling from the foundations laid in the late nineteenth
century to the present, some of the accomplishments of mathematical modelling, and some
challenges for the future. Our purpose is to demonstrate the importance of mathematical
modelling for the understanding and management of infectious disease transmission.

Introduction
Communicable diseases such as measles, influenza or
tuberculosis are a fact of modern life. Some diseases, such
as chicken pox, usually have mild symptoms and vanish
of their own accord. Others, such as Ebola (recurrently)
and SARS, have appeared, causing a significant number of
deaths, and then disappeared, but not before giving rise to
fears of catastrophic spread. The prevalence and effects of
many diseases in resource-constrained countries are prob-
ably less well-known but may be of even more impor-
tance. Every year, millions of people die of measles,
respiratory infections, diarrhea and other diseases that are
easily treated and not considered dangerous in the West-
ern world. Diseases such as malaria, typhus, cholera,
schistosomiasis and sleeping sickness are endemic in
many parts of the world. The effects of high disease mor-
tality on mean lifespans, and of disease debilitation and
mortality on the economy in afflicted countries are con-
siderable. A case in point is the AIDS epidemic, which has
devastated life in much of Africa.

For some diseases, there are management methods, which
may involve prevention (such as vaccination) or treat-
ment of symptomatic patients. For diseases with no
known treatment, it is possible to attempt control by iso-

lation of diagnosed patients and quarantine of suspected
victims to decrease transmission. However, it is not possi-
ble to do experiments to compare possible management
strategies; the only way to attempt to compare the effec-
tiveness of different approaches may be to formulate a
mathematical model and use it to make predictions. Cur-
rently, HIV/AIDS causes many deaths and is a significant
aspect in the social and economic structure of some coun-
tries, notably in Africa. Because of the long time scale on
which HIV runs, a clinical trial to compare control strate-
gies would take many years for results to be obtained. In
order to provide useful information, models for the trans-
mission of infectious diseases must be quantitative; this
points to a need to develop mathematical models.

There have been many advances in disease management
that have come from mathematical modelling. Two of the
most striking are the recognition that mosquito manage-
ment is the key to malaria control in a region and the real-
ization that smallpox could be eradicated. However, there
are many others.

Communicable diseases in history
Throughout the course of history, communicable diseases
have had major effects on human development. The Book
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of Exodus describes the plagues that Moses brought down
upon Egypt; there are many other biblical references to
diseases as historical influences, such as the decision of
Sennacherib, the king of Assyria, to abandon his attempt
to capture Jerusalem about 700 BC because of the illness
of his soldiers (Isaiah 37,36-38). The fall of empires has
been attributed directly or indirectly to epidemic diseases.
In the second century AD, the so-called Antonine plagues
(possibly measles and smallpox) invaded the Roman
Empire, causing drastic population reductions and eco-
nomic hardships, leading to disintegration of the empire
because of disorganization, which facilitated invasions of
barbarians. The Han empire in China collapsed in the
third century AD after a very similar sequence of events.
The population of China decreased from 123,000,000 to
65,000,000 around 1200 AD because of a combination of
war with the Mongols and plague.

The defeat of a population of millions of Aztecs by Cortez
and his 600 followers in 1519 can be explained, in part,
by a smallpox epidemic that devastated the Aztecs but had
almost no effect on the invading Spaniards, thanks to
their built-in immunities. The Aztecs were not only weak-
ened by disease but also confounded by what they inter-
preted as a divine force favouring the invaders. Smallpox
then spread southward to the Incas in Peru and was an
important factor in the success of Pizarro's invasion a few
years later in 1532. Smallpox was followed by other dis-
eases, such as measles and diphtheria, that were imported
from Europe to North America. In some regions, the
indigenous populations were reduced to one tenth of
their previous levels by these diseases; between 1519 and
1530 the native population of Mexico was reduced from
30 million to 3 million.

The Black Death (bubonic plague) spread from Asia
throughout Europe in several waves during the fourteenth
century, beginning in 1346, and is estimated to have
caused the deaths of as much as one-third of the popula-
tion of Europe between 1346 and 1350. The disease
recurred regularly in various parts of Europe for more than
300 years, notably as the Great Plague of London (1665-
1666). It then gradually withdrew from Europe. As the
plague struck some regions harshly while avoiding others,
it had a profound effect on political and economic devel-
opments in medieval times. In the last bubonic plague
epidemic in France (1720-1722), half the population of
Marseilles, 60 percent of the population in nearby Tou-
lon, 44 percent of the population of Arles and 30 percent
of the population of Aix and Avignon died, but the epi-
demic did not spread beyond Provence.

The first attempt to construct the Panama Canal (1881-
88) had to be abandoned because of yellow fever and
malaria; the second attempt, beginning in 1907, was suc-

cessful because of eradication of the mosquitoes which
acted as vectors to spread these diseases.

Current concerns about a possible influenza pandemic are
magnified by knowledge of the 1918 influenza pandemic,
which caused a number of deaths estimated as between
50,000,000 and 100,000,000.

The historian W.H. McNeill argues, especially in his book
[1], that the spread of communicable diseases frequently
has been an important influence in history. For example,
there was a sharp population increase throughout the
world in the 18th century; the population of China
increased from 150 million in 1760 to 313 million in
1794 and the population of Europe increased from 118
million in 1700 to 187 million in 1800. There were many
factors involved in this increase, including changes in
marriage age and technological improvements leading to
increased food supplies, but these factors are not sufficient
to explain the increase. Demographic studies indicate that
a satisfactory explanation requires recognition of a
decrease in the mortality caused by periodic epidemic
infections. This decrease came about partly through
improvements in medicine, but a more important influ-
ence was probably the fact that more people developed
immunities against infection as increased travel intensi-
fied the circulation and co-circulation of diseases.

While epidemics may cause many deaths in a short time
before disappearing, new diseases may also appear and
become endemic. The appearance of AIDS about 1981,
apparently initially in the population of men having sex
with men in San Francisco, was such an event. It was iden-
tified as an immune disorder in the blood which could be
spread in many ways: through sexual contact, shared nee-
dles for drug injections, transfusions with infected blood
and by vertical transmission from mother to unborn
child. It took two years for scientists to identify a virus,
which became known as HIV, linked to AIDS. In 1987, a
new drug (AZT) was developed which delayed progres-
sion of the disease, but many patients developed drug
resistance. New drugs and combinations of drugs renewed
hope, but they offered only improved length and quality
of life, not a cure. It is estimated that in 2007 there were
more than two million deaths from AIDS worldwide and
more than 33, 000, 000 persons living with AIDS, includ-
ing 330, 000 children. More than three quarters of these
deaths were in sub-Saharan Africa. It is not an exaggera-
tion to say that HIV/AIDS is the most urgent health prob-
lem for the entire world. While AIDS treatment rates have
increased in some parts of the world, they remain very low
in Africa and resource-poor countries.

Descriptions of epidemics in ancient and medieval times
frequently used the term "plague" because of a general
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belief that epidemics represented divine retribution for
sinful living. This view has not disappeared entirely. Some
have described AIDS as punishment for sinful activities
and such views have delayed or hampered attempts to
control this modern epidemic.

In view of the importance of communicable diseases in
history, it is natural that people would make efforts to
understand the causes of diseases and search for treat-
ments. This search leads naturally to an effort to construct
models that focus on the main properties of a disease
without necessarily attempting to include all the details.

Why should we model?
A model is an attempt to answer a question that begins
with "Why?" The relation between problems and models
in science may be described by the "flow chart" in Figure
1 (adapted from a similar flowchart in [2], by permis-
sion).

The normal process of scientific progress is to observe a
phenomenon, hypothesize an explanation and then
devise an experiment to test the hypothesis. A mathemat-
ical model is a mathematical description of the situation
based on the hypotheses and the solution of the model
gives conclusions which may be compared with experi-
mental results. This comparison usually requires numeri-
cal simulations to give predictions which may be
compared with observed data.

It has been observed in many epidemics that the disease
spreads into a population and then disappears without
infecting the entire population. Intuitively, one might
think that epidemics die out because there are no people
left in the location of the epidemic to be infected, but
there is much evidence to contradict this explanation. In

order to explain why part of the population escapes infec-
tion during an epidemic, it is natural to try to give a
description of how the disease spreads. Such a descrip-
tion, or model, does not necessarily try to include all the
details of the epidemic spread, but attempts to incorpo-
rate the factors that appear to be the most important.
While a model may be a description in words, in order to
compare observed results with a model prediction it is
necessary to formulate the model mathematically. The
general process is to make some assumptions about the
way in which the epidemic spreads, formulate these
assumptions in mathematical terms and translate them
into a mathematical problem. This mathematical prob-
lem is a model of the epidemic.

For example, Kermack and McKendrick set out to try to
explain why epidemics pass through a population with-
out affecting the entire population [3]. Their mathemati-
cal model assumed mass-action incidence to describe the
acquisition of infection followed by a period of infectivity
and then recovery with immunity against reinfection. The
simplest mathematical formulation of these assumptions
is a pair of ordinary differential equations for the number
of susceptible (uninfected) and the number of infected
(and infectious) members of the population. They were
able to describe the solution of this mathematical prob-
lem qualitatively, in terms of a quantity called the basic
reproduction number that may be calculated in terms of
the parameters of the model. This mathematical solution
leads to the prediction that if the basic reproduction
number is less than one, the number of infectives will
tend to zero; if the basic reproduction number exceeds
one, the number of infectives will increase initially before
tending to zero, while the number of susceptibles
decreases but never reaches zero. This prediction not only
matches observations but also gives a criterion for
whether a disease outbreak will develop into an epidemic
or die out. In order to make more detailed predictions
about the number of people infected in an epidemic, it
would be necessary to make more detailed assumptions
about the situation to give a more complicated mathemat-
ical model. Such a model would probably be sufficiently
complicated that an exact solution would be impossible;
numerical simulations would be needed to obtain predic-
tions that could be compared with observations. Scientific
experiments are usually designed to obtain information
and to test hypotheses. For example, we might wish to
compare two different management strategies for a dis-
ease outbreak. Experiments in epidemiology with controls
are often difficult or impossible to design; even if it is pos-
sible to arrange an experiment, there are serious ethical
questions involved in withholding treatment from a con-
trol group. In order to describe the course of a future dis-
ease outbreak, formulation and analysis of a
mathematical model may be the only way to compare the

Problems and ModelsFigure 1
Problems and Models. A "flow chart" describing the rela-
tionship between scientific problems and models.
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effect of different management strategies. Mathematical
modelling in epidemiology provides understanding of the
underlying mechanisms that influence the spread of dis-
ease and, in the process, it suggests control strategies. In
fact, models often identify behaviours that are unclear in
experimental data. This may occur because data are non-
reproducible and the number of data points is limited and
subject to errors in measurement.

In the mathematical modelling of disease transmission, as
in most other areas of mathematical modelling, there is
always a trade-off between simple models, which omit
most details and are designed only to highlight general
qualitative behavior, and detailed models, usually
designed for specific situations including short-term
quantitative predictions. There is a tendency on the part of
mathematicians to want to study models which are too
simple to capture the essential properties of a disease,
while there is a tendency on the part of epidemiologists to
want complete models which may be too difficult to ana-
lyze properly. Detailed models are generally difficult or
impossible to solve analytically; hence, their usefulness
for theoretical purposes is limited, although their strategic
value may be high. Also, more detailed models contain
more parameters and therefore it may be more difficult to
fit parameters to the model. Parameter fitting to a compli-
cated model is especially dubious if data are sparse or of
questionable accuracy. In order to be useful, a disease
model should have a level of complexity appropriate to
the amount of known information and the results desired.
Ideally, a model should also have a level of complexity
appropriate to the specific questions the model is
designed to answer; however, these two requirements may
not be compatible.

History of epidemiological modelling
The idea of invisible living creatures as agents of disease
goes back at least to the writings of Aristotle (384 BC-322
BC). It developed as a theory in the 16th century. The
existence of microorganisms was demonstrated by Leeu-
wenhoek (1632-1723), with the aid of the first micro-
scopes. The first expression of the germ theory of disease
by Jacob Henle (1809-1885) came in 1840 and was devel-
oped by Robert Koch (1843-1910), Joseph Lister (1827-
1912), and Louis Pasteur (1827-1875) in the latter part of
the nineteenth century and the early part of the twentieth
century.

The mechanism of transmission of infections is now
known for most diseases. Generally, diseases transmitted
by viral agents, such as influenza, measles, rubella (Ger-
man measles) and chicken pox, confer immunity against
reinfection, while diseases transmitted by bacteria, such as
tuberculosis, meningitis and gonorrhea, confer no immu-
nity against reinfection. Other diseases, such as malaria,

are transmitted not directly from human to human but by
vectors, agents (usually insects) that are infected by
humans and subsequently transmit the disease back to
humans.

The first mathematical model in epidemiology was the
work of Daniel Bernoulli [4] on the effect of variolation
against smallpox in increasing life expectancy. His work
contained the idea of differential mortality to estimate the
rate of deaths attributable to a given disease, a method
which has been used to estimate disease death-rates of
past epidemics, such as the 1918 influenza pandemic.

The foundations of mathematical epidemiology were laid
in the late nineteenth and early twentieth centuries by
public-health physicians and biological scientists such as
P.D. En'ko [5], W.H. Hamer [6], J. Brownlee [7], Sir R.A.
Ross [8], A.G. McKendrick and W.O. Kermack [3,9,10].
En'ko developed a discrete chain binomial model for the
spread of infection in a susceptible population in 1889
[11].

Two of the landmarks in the development of mathemati-
cal epidemiology, illustrating the dichotomy between
models for a specific disease and models for general
classes of diseases, are the work of Ross on malaria, and
the epidemic models of Kermack and McKendrick for
classes of disease. Ross showed that malaria was transmit-
ted through mosquitos and developed a model to
describe the spread of malaria [8]. He then deduced from
this model that reducing the mosquito population could
control malaria in a region. This model was probably the
first example of the threshold concept, which has been
central in epidemiology ever since. The idea is that most
mathematical epidemic models, including those that
include a high degree of heterogeneity, usually exhibit
"threshold" behaviour. In epidemiological terms, these
can be stated as follows: If the average number of secondary
infections caused by a single infective introduced into a wholly
susceptible population is less than one a disease will die out,
while if it exceeds one there will be an epidemic. This broad
principle, consistent with observations and quantified via
epidemiological models, has been used regularly to esti-
mate the effectiveness of vaccination policies and the like-
lihood that a disease may be eliminated or eradicated.
Hence, even if it is not possible to verify hypotheses accu-
rately, agreement with hypotheses of a qualitative nature
is often valuable.

The threshold principle is described quantitatively by the
idea that the average number of secondary infections
caused by an average infective is known as the basic repro-
duction number or basic reproductive ratio and denoted
by 0 [12]. It is a basic concept in mathematical epidemiol-
ogy, derived originally from theoretical modelling consid-
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erations and then verified in observations. Its calculation
for a given model and its estimation from observations are
central in the analysis of models and the interpretation of
data. If the basic reproduction number is less than one,
then the infection dies out; if it exceeds one, then the
infection persists.

The concept of the basic reproduction number was
extended greatly in the work of Kermack and McKendrick
[3,9,10] on general compartmental models, both for dis-
eases in which recovery from infection conferred immu-
nity against reinfection - commonly the case for diseases
spread by viral infections - and for diseases in which
recovered individuals are susceptible to reinfection, as is
common for diseases transmitted by bacterial agents and
for sexually transmitted diseases. What are usually
described as the Kermack-McKendrick models are actually
very special cases of the models in these papers, which
included infectivity depending on age of infection and
temporary immunity [13]. An offshoot of this work was
the attempt by Soper [14] to explain the oscillations that
had been observed in measles prevalence in many places.
While Soper's explanation was flawed, it led to many
other attempts to describe plausible models for measles
[15-19] to explain the observed oscillations.

After the work of Kermack and McKendrick, there were
many extensions of the basic models. The book by Bailey
[20] describes many of the extensions that had been made
up to the time of its publication in 1957; further updates
during the next twenty years include [21-24], as well as the
second edition of Bailey's book in 1975 [25]. Some of
these refinements were made to give more realistic
descriptions of microparasitic diseases by adding com-
partments. One such refinement was the incorporation of
an exposed (latent) period, a time during which members
of a population who have been infected do not pass on
the infection to others. Another refinement was to models
with temporary immunity against reinfection or to the
assumption of a sequence of removed stages [26].

Another important aspect has been the question of a suit-
able representation for the rate of transmission of infec-
tion from an infective to a susceptible individual. The
earliest models assumed a mass-action incidence law, pos-
sibly suggested by Hamer [6] and certainly present in the
Ross malaria model. This law assumes that the average
number of contacts sufficient to produce infection per
individual in unit time is proportional to the population
density. More recently, it has been noted that actual con-
tact rates are not strongly dependent on population den-
sity. This suggests other forms for transmission rates, such
as "standard incidence", in which it is assumed that the
average number of contacts per individual in unit time is

constant, or some sort of saturating contact rate [27,28];
see also [29-31] for recent references.

One main focus of mathematical epidemiology has been
on the understanding and computation of the basic repro-
duction number in models with various kinds of hetero-
geneity. One useful abstract interpretation of the basic
reproduction number is in terms of a "next generation"
operator [32,33]. The addition of more structure in an epi-
demic model makes the interpretation and calculation of
the basic reproduction number more difficult. The basic
reproduction number, now universally denoted by 0, is
undoubtedly the most central idea in mathematical epide-
miology, and its importance lies in its broad generality.

In an epidemic situation, where the time scale is short
enough that there is are no births and no recruitment of
new susceptibles into the population, and where recovery
from disease confers full immunity against reinfection,
the basic reproduction number marks a threshold
between disappearance of the infection (basic reproduc-
tion number less than one) and the outbreak of an epi-
demic (basic reproduction number greater than one).

If there is a flow into the population of new susceptibles,
the situation is different. If the basic reproduction number
is less than one, there is a disease-free equilibrium and the
infection dies out; if the basic reproduction number
exceeds one, there is an endemic equilibrium and the dis-
ease may remain in the population. Some of the Kermack-
McKendrick models [3,9,10] included proportional birth
and death rates, which could allow exponential popula-
tion growth in the absence of disease. This direction has
been followed more recently [34-36]. For highly endemic
diseases in resource-constrained countries, this is a plausi-
ble assumption. The question of whether and how an
infectious disease alters the pattern of population growth
is of particular concern [37]. However, in countries with
more resources, it is more natural to expect bounded pop-
ulation size, suggesting nonlinear demographics. A first
step is to assume a balance between births and deaths,
keeping a constant total population size [22,38,39]. How-
ever, if there are deaths due to disease or a disease-related
reduction of births, then it is not possible to keep the total
population size constant and it is natural to assume non-
linear demographics, with density-dependent birth rates.
Some of the papers that have incorporated nonlinear
demographics into epidemiological models include [40-
42]. An important direction of generalization has been the
addition of more heterogeneity of various kinds in mod-
els. One kind of heterogeneity is heterogeneity of behav-
iour and the possibility that different subsets of a
population may mix with different frequencies. This idea
has been especially important in the study of sexually
transmitted diseases [43-48], a topic of continuing inter-
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est. An important aspect of sexually transmitted diseases is
that there is often a "core" group of very highly active indi-
viduals who are responsible for most of the disease trans-
mission; control efforts aimed at this core group are likely
to be most effective for control. This was analyzed in mod-
els in [49,50] and the translation of this analysis into
action has been effective, especially for gonorrhea.

Other heterogeneities are also important. Many "child-
hood" diseases are transmitted mainly in school between
children of the same age. Because age groups may mix het-
erogeneously, it may be appropriate to include age struc-
ture in epidemiological models [24,34,36,51-55].
Threshold results can be established for the existence of
endemic states [56,57]. The incorporation of age structure
leads to possibilities of behaviour that are not possible
without the age dependence, such as sustained oscilla-
tions [19,58,59]. However, there is no indication of
period-doubling or chaotic behaviour unless seasonal var-
iation of contacts is assumed [16,60]. Age structure is an
important aspect in the transmission of childhood dis-
eases [61], e.g., for pertussis [62], rubella [29] and vari-
cella [63]; it must be included in models designed to
suggest realistic vaccination strategies. Optimal ages of
vaccination are considered in [64,65]. Age structure can
also be incorporated as the time since becoming infected
(age of infection) [66]. This is an important characteristic
of HIV/AIDS models [67].

Spatial heterogeneity in disease models takes two forms.
One is local, namely diffusion in space. An introduction
to models for the spatial spread of epidemics may be
found in [[68], Chapter 20]; other references are
[34,51,69-71]. One characteristic feature of such models
is the appearance of traveling waves, which have been
observed frequently in the spread of epidemics through
Europe from medieval times to the more recent studies of
fox rabies [68,72]. The asymptotic speed of spread of dis-
ease is the minimum wave speed [73-79]. Models describ-
ing spatial spread and including age of infection are
analyzed in [68,80,81].

A second form of spatial heterogeneity is related to travel.
With the advent of intercontinental air travel, it is possible
for diseases to move from one location to a completely
separate location very rapidly; this has led to the study of
metapopulation models or models with patchy environ-
ments and movement between patches [82-88].

For some diseases (e.g., Chagas' disease), the epidemio-
logical unit may not be an individual, but the essential
question may be whether a household is infected [89]; see
also [90-92] for more recent stochastic models that
include household structure.

General models for diseases with vector transmission
[24,93,94] grew out of the Ross malaria model. Vector
transmission means simply that infection goes back and
forth between two populations rather than being trans-
mitted directly. Vector models are also appropriate in the
study of heterosexually transmitted diseases, where the
two populations are the males and females of the same
species.

Vertical transmission, where newborn members of a pop-
ulation are infected, is a feature of many diseases, such as
HIV/AIDS and Chagas' disease. A thorough description of
diseases and models that include vertical transmission
may be found in [95].

The original compartmental models assumed the rate of
movement out of a compartment to be proportional to
the number of members in the compartment. This is
equivalent to the assumption of an exponentially distrib-
uted time spent in the compartment and leads to an ordi-
nary differential equation model. For many diseases, a
fixed time in a compartment, corresponding to a differen-
tial-difference equation model, is more realistic [96-100].
This assumption can lead to new possibilities for qualita-
tive behaviour of a model [26,40,101]. More generally, an
arbitrary distribution of times spent in a compartment can
be assumed (see [102] and the bibliographical remarks
there), leading to an integral equation or integro-differen-
tial equation model. Studies of realistic distributions may
be found in [103-106]. The qualitative analysis of such
models leads to questions of the location of roots of a
transcendental equation. One consequence of results for
such models is the possibility of unstable equilibria and
sustained oscillations for some parameter sets in epidemic
models. As these oscillations may have large amplitude
and long period, they would be very troublesome in dis-
ease management. There have been several surveys of
results of this nature [101,107], and work in this area con-
tinues [108,109].

Continuing in the tradition of Ross, there have been stud-
ies that focussed on specific diseases; see, for example,
[35,49,110-114]. These have probably been the results of
most immediate interest to field epidemiologists. How-
ever, it should not be overlooked that some fundamental
ideas of practical importance, such as the relation between
mean age at infection and the basic reproduction number,
the concept of herd immunity, and the formulation of
immunization strategies, were developed from simple,
general models. For example, from data on smallpox, an
estimated 0 can be used to show that an immunization
coverage of 70-80% should be sufficient to eradicate the
disease [[111], Table 5.1]. The eradication of smallpox,
declared in 1980 [115], was achieved by worldwide vacci-
nation, and was a triumph for public health. This descrip-
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tion has been mostly about deterministic compartmental
models, but stochastic models have also been important.
We will not go into the description and development of
such models here, but some useful references are [20,90-
92,114,116-124].

Another, relatively recent, development in disease trans-
mission modelling has been the use of network models
and detailed study of the network of contacts of an indi-
vidual. Again, we do not go into the description and
development but merely cite references [125-131] for the
theoretical background and [132-136] for some simula-
tions using network models for predictions of influenza
pandemics. There is still much to be done in validating the
simulation results and relating them to the theory. The
origins of the study of mathematical epidemiology come
from outside mathematics. As the mathematical analysis
of epidemiological models progressed, epidemiologists
took less account of the contributions of mathematics to
epidemiology and mathematicians have not always been
responsive to the questions that concern epidemiologists.
Epidemiology and mathematical epidemiology appear to
have diverged, but currently there are serious attempts to
improve communications.

Some of the references cited contain historical informa-
tion about the development of epidemiological models. A
good description of the history up to 1975 may be found
in [25]. Another important source of information about
mathematical epidemiology is [111], which includes both
descriptions of the properties of many communicable dis-
eases and mathematical models. However, a full, up-to-
date history has yet to be written. We may hope that if
mathematicians and epidemiologists can come together, a
history written in a few years would be radically different
from a history that might be written today.

What has modelling accomplished?
We have already mentioned two of the most striking con-
tributions of mathematical modelling to disease manage-
ment: the control of malaria through control of
mosquitoes [8] and the elimination of smallpox by a suf-
ficiently high vaccination rate [115]. Sir R. A. Ross was
awarded the second Nobel prize in Medicine in 1902 for
his work, beginning in 1882, in which he established that
malaria was spread through contacts between humans
and mosquitoes. Even though this discovery was hon-
oured in the medical community, his conclusion that con-
trol of mosquitoes would be an aid in controlling malaria
was not accepted because it was felt that it would be
impossible to rid a region of mosquitoes and keep it mos-
quito-free. Only after Ross described a mathematical
model [8] indicating that it was not necessary to remove
the entire mosquito population to control the disease was
this strategy adopted, with great success. In fact, Ross's

model proved to be such a robust description of malaria
that it remained current for about 50 years until it was
updated by MacDonald [137].

Vaccination for smallpox, the world's first vaccine, was
begun in 1796 by Edward Jenner, who had observed that
people who had been infected with cowpox did not get
smallpox. The recognition, from a smallpox model
involving herd immunity, that vaccination of 70 - 80% of
a population would eliminate smallpox, led to an eradica-
tion program by the World Health Organization begin-
ning in 1967; the last case in the Americas was in 1971
and the last case worldwide was in Somalia in 1977
[8,115,138-140].

Measles is a childhood disease which is easily controlled
by vaccination, but in many resource-constrained coun-
tries, few children are vaccianted against measles and
there are a million deaths from smallpox worldwide.
Models with age structure have compared a strategy of a
single dose of vaccine to a two-dose strategy; epidemiolo-
gists have concluded that a two-dose strategy of doses at
age 12 to 15 months and 4 to 6 years is more effective.
However, herd immunity would require an immune frac-
tion of at least 0.94. Since vaccine efficacy for measles is
about 0.95, it is unlikely that this can be achieved
[29,141]. Thus, elimination of measles is unlikely to be
achievable.

Another example of an important contribution of mathe-
matical modelling is the control of sexually transmitted
diseases through concentration on the most active mem-
bers of the population [49]. Others include the manage-
ment of bovine hoof and mouth disease in Great Britain
through a process of culling infected herds of cattle as sug-
gested by models [142,143].

To epidemiologists, the measure of whether a disease out-
break has been controlled is whether the reproduction
number has been reduced to a value less than one. During
the SARS epidemic of 2002-2003, the estimation of 0 was
the focus of many studies [144-146] and, after the epi-
demic had passed, models to compare the contribution of
contact tracing and quarantine of suspected cases with the
contribution of diagnosed infectives were studied. The
conclusion appears to be that isolation was more effective
and much less costly, partly because fewer than 5% of the
people identified by contact tracing developed disease
[147]. However, if infectivity had developed before the
appearance of symptoms, which is now considered not to
have been the case for SARS, contact tracing would have
been more useful. The lessons learned from SARS are
being applied to planning for a possible influenza pan-
demic.
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For most disease transmission models, the expected situa-
tion is that if the basic reproduction number is less than
one, then there is a globally asymptotic disease-free equi-
librium, while if the basic reproduction number exceeds
one, there is an endemic equilibrium. There are some sit-
uations [148-154] in which there may be a backward
bifurcation for some parameter values as the basic repro-
duction number passes through one. In such cases, there
may be an endemic equilibrium when the basic reproduc-
tion number is less than one (ruling out global asymptotic
stability of the disease-free equilibrium) with discontinu-
ities in behaviour as the basic reproduction number
changes. Such behaviour is very unsettling for disease
management and it is important to know from models
when it can occur so that control evaluation can allow for
the possibility. It can arise if there are groups with differ-
ent susceptibility to infection or different contact rates as
in models with partially effective vaccination
[44,45,148,155,156].

Expressions for the basic reproductive number for HIV in
various populations have been used to test the possible
effectiveness of vaccines that may provide temporary pro-
tection by reducing either HIV-infectiousness or suscepti-
bility to HIV. Models are used to estimate how widespread
a vaccination plan must be to prevent or reduce the spread
of HIV.

Challenges for the future
While there are many infectious diseases which may pose
huge problems in the near future, perhaps the two of most
current concern are pandemic influenza and HIV/AIDS.
For both, there are serious logistical questions concerning
the availability and distribution of resources for manage-
ment. Some basic questions are:

• How large a supply of drugs and medicines is
needed?

• How can the necessary drugs and medicines be dis-
tributed?

• What happens to management strategies if the sup-
ply is insufficient?

• What might be the effects of the development of
drug-resistant strains of infection?

• Can social distancing initiatives be helpful in disease
management?

For HIV, one of whose aspects is the variation of infectiv-
ity with time since infection, detailed models will require
an understanding of the development of virus in a host;
models will need to link immunology and the cell level

with infection and the individual level. Another difficulty
in understanding HIV is that HIV can be a dormant virus
in immune cells. The study of HIV on a cell level is well
under way, but there is much more to be done; some basic
references are [157-162]. Another aspect of HIV is the rec-
ognition that transmission depends strongly on the heter-
ogeneity of contacts. Because HIV/AIDS is a disease with
complicated scientific properties, it is of great interest to
theoretical modelers, and because HIV/AIDS is so wide-
spread and devastating, it is of great interest to scientists
and also to governments. It is reasonable to hope that suf-
ficient funding for research and treatment may be forth-
coming.

Mathematical modelling has been a vital link between
mathematics and physics for many years. A correspond-
ingly strong link between mathematics and epidemiology
would lead to great progress in epidemiological model-
ling. Currently, the mathematical content in the under-
graduate education of students in the biological sciences
is increasing; this should prove to be of great value in
strengthening the links between mathematics and biol-
ogy.
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