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Abstract

Most mathematical models used to study the dynamics of influenza A have thus far focused on the between-host
population level, with the aim to inform public health decisions regarding issues such as drug and social
distancing intervention strategies, antiviral stockpiling or vaccine distribution. Here, we investigate mathematical
modeling of influenza infection spread at a different scale; namely that occurring within an individual host or a cell
culture. We review the models that have been developed in the last decades and discuss their contributions to our
understanding of the dynamics of influenza infections. We review kinetic parameters (e.g., viral clearance rate,
lifespan of infected cells) and values obtained through fitting mathematical models, and contrast them with values
obtained directly from experiments. We explore the symbiotic role of mathematical models and experimental
assays in improving our quantitative understanding of influenza infection dynamics. We also discuss the challenges
in developing better, more comprehensive models for the course of influenza infections within a host or cell
culture. Finally, we explain the contributions of such modeling efforts to important public health issues, and
suggest future modeling studies that can help to address additional questions relevant to public health.

Introduction
The influenza A virus causes annually recurring epi-
demic outbreaks, most people become infected multiple
times over their lifetime [1]. The virus also has the pro-
pensity to cause occasional pandemics with potentially
high death tolls [2,3]. Influenza infection results in the
desquamation of the epithelial cells lining the nasal
mucosa, the larynx, and the tracheobronchial tree. In
the case of typical, uncomplicated influenza in humans,
the infection will involve only the upper respiratory
tract and the upper divisions of bronchi [4]. In very
severe, and often fatal cases of influenza, the infection
will spread to the lower lungs as observed, for example,
in some infections with avian influenza strains [5,6].
The site of infection, namely the airway epithelium, con-
sists of a single layer of cells everywhere except in the
trachea [7] and is composed of four major cell types:
basal (progenitor), ciliated, goblet, and Clara cells [8].
While human-adapted, seasonal strains of influenza tend

to preferentially bind and infect nonciliated cells, avian-
adapted strains appear to prefer ciliated cells, which
could explain these strain’s propensity to infect the
lower respiratory tract [6,9-11].
An influenza A infection is typically initiated following

the inhalation of respiratory droplets from infected per-
sons. These droplets containing influenza virions (virus
particles) first land on the mucus blanket lining the
respiratory tract [7,12]. While many virions are
destroyed by non-specific clearance such as mucus bind-
ing, the remaining virions escape the mucus and attach
to receptors on the surface of target epithelial cells. The
incubation time for influenza is typically about 48 h, but
will typically vary between 24–96 h, possibly owing to
the size of the initial inoculum [7]. Cell infection is
initiated by adsorption of the virions to the cell surface.
The influenza virus hemagglutinin (HA) is responsible
for binding the sialic acid receptors on the surface of
epithelial cells providing a strong bond, facilitating the
virion’s adsorption into the cell. This results in receptor-
mediated endocytosis of the virus particles approxi-
mately 20 min after infection [7]. Once inside the cell,
the virions begin replicating, using the machinery and
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building materials that would normally be used by the
host cell to maintain its functions. Virus budding, which
takes place only at the apical surface membrane of
infected cells [13], can be detected 5–6 hours post-infec-
tion (hpi), and is maximal 7–8 hpi (see Table 1). The
period between successful infection of the cell and the
productive release of viral progeny is often called the
“eclipse phase”. Just as it did upon cell entry, the HA on
the surface of the virions will again bind the sialic acid
receptors. The virus neuraminidase (NA) is responsible
for cleaving the sialic acid receptors on the surface of
the cells to allow the newly-produced influenza virions
to break free of the cell that has produced it and go on
to infect other cells. Successive cycles of cell infection
quickly result in an exponential growth of viral titer,
which peaks around 2–3 days post-infection (dpi). The
infection typically resolves in 3–5 dpi, and virus can
typically be isolated between 1–7 dpi [7]. In a primary
infection with influenza, pathogen-specific antibodies
(Abs) and CD8+ cytotoxic T lymphocytes (CTL) are first
observed around 5 dpi, peaking around 7 dpi, whereas
in a secondary infection Abs and CTLs can respond as
early as 3 dpi [14]. Cellular regeneration of the

epithelium begins 5–7 dpi but complete resolution can
take up to one month [15]. Figure 1 illustrates the
kinetic of the course of an influenza infection within a
host.
Several aspects of influenza infections are still unre-

solved. For instance, the contributions of strain-specific
cell tropism, pre-existing immunity, and host genetic
factors in shaping the virulence and transmissibility of a
particular influenza strain are not well understood
[16,17]. There is much to be learned about how a
strain’s genotype shapes complex phenotypes such as
virulence and transmissibility. Most of these unresolved
aspects will require a quantitative analysis of the key
players and of the significance of their respective contri-
bution. As we enter the era of quantitative virology and
immunology, with ever more sophisticated experimental
tools collecting ever increasing amounts of data, there is
more than ever a need for greater synergy between
experiments and analysis.
Much work has been done on attempting to capture

the dynamics of influenza A using mathematical models;
almost all of these models are on the host population
level and are concerned with transmission between
infected hosts. These models can be used as tools to
inform public health decisions with respect to pandemic
planning: whom, how and when to quarantine, vacci-
nate, treat with antivirals, and how much and what to
stockpile [18-26].
Here, we focus on a lesser known application of math-

ematical modeling to the study of influenza kinetics,
that aimed at understanding and quantifying the pro-
cesses involved in determining the severity, duration,
and outcome of the progression of the infection within
a host or a cell culture. These types of models provide
information of a different nature, but, as we will outline
below, the information they provide can be equally criti-
cal for better treatment and management of the disease.
Furthermore, the development of reliable within-host
models is critical to improving epidemiological models
since the latter relies on the former to more accurately
capture the diversity of infection severity, latency, and
symptoms.
We first present a survey of the published literature

on within-host and in vitro modeling of influenza infec-
tions (see also [27] for a recent review of some of those
modeling efforts). We then discuss in general terms
both the contributions made by those models and the
lessons learned, as well as the challenges that remain as
we seek to further our understanding of influenza
kinetics within a host or cell culture. We close by high-
lighting the importance of the models to public health
and promising directions for additional modeling
studies.

Table 1 Kinetic parameters for influenza obtained from
both fitting mathematical models to data and by direct
estimation from experimental data

Parameter Values [References]

Mathematical models to fit experimental data

Average lifespan of an
infected cell

39h [42], 6h and 11.4h [15], 18h and 48h
[39], 6h–14h [47], 17h and 40h [31], 1.8h and
33h [45] 28h.

Average infectious
lifespan of a virion

111h [42], 4.6h and 8h [15], 8h and 300h
[39], 9.5h [47], 1.8h–9.1h [45], 5.7h and
2.6min [31]

Length of the latent
(eclipse) phase

6h [15], 0.22h–6h [47], 6h–8.5h [45]

Rate of epithelial cell (re)
growth per day

0.72 [42], 0.015 [75], 6.2 × 10-8 and 0.34 [31]

Drug efficacy 0.97 and 0.99 [39] (oseltamivir), 0.56–0.92 [47]
(amantadine)

Lifespan of interferon 3.5h [74], 60h [75]

Direct experimental measures

Average lifespan of an
infected cell

12–48h [80-86]

Average infectious
lifespan of a virion

0.5–3h [87-90]

Length of the latent
(eclipse) phase

3–12h [42,80,82-84,87,88,91-93]

Lifespan is defined as the inverse of the rate parameters (the sometimes
alternatively used half-life contains an extra factor of log(2)). Note that some
of the studies are in vitro and some in vivo. Multiple values come from either
differences in strains or different models analyzed within a single study.
Caveats about the reliability of the estimates obtained from model fitting are
discussed in the section titled “Data diversity and quantity and its effect on
parameter identifiability”.
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Mathematical models of within-host influenza
dynamics and their contributions
Simple models without an immune response
Overview of the models
The most basic models considered to capture the
dynamics of influenza infections, both in vivo and in
vitro, consist of sets of ordinary differential equations
(ODEs), namely
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These models describe the dynamics of susceptible
target cells, T, which become infected at rate b by the
free virions, V . In model (1), the newly infected cells, I,
immediately begin to produce virus, whereas in model
(2), newly infected cells first undergo a latent or eclipse
phase, E, before they become infectious, I, after an

average time 1/k has elapsed. Infectious cells, I, are
assumed to produce virions at a constant rate p, until
they undergo apoptosis after an average time 1/δ.
Finally, virus produced by infectious cells is eventually
lost after an average time 1/c due to clearance mechan-
isms that include loss of infectivity (if the viral titer is
measured in units of infectious virus, e.g., pfu, TCID50),
and binding with antibodies or mucus when analyzing
in vivo experiments. Note that these models make the
assumption of exponentially distributed latent and infec-
tious periods, which were shown to be incorrect as they
cannot reproduce the kinetics of certain experimental
influenza infection assays (see Applications to in vitro
systems). The use of more appropriate distributions in
implementing these delays can alter the model behavior
and estimates obtained from data fitting [28-30].
The typical kinetics of these models is illustrated in

Figure 2 for the model including a latent phase using
the averaged parameters presented in Table 3 of [15].
These parameters correspond to the geometric average
of a nonlinear fit of model (2) to viral titer from 6
human volunteers infected with influenza A/Hong
Kong/123/77 (H1N1). Viral titer grows exponentially,
peaks around 2–3 dpi, before decaying exponentially.

Figure 1 Course of an influenza infection within a host. The timings of the adaptive immune response, namely Antibodies (Abs) and
cytotoxic T lymphocytes (CTL), for both a primary (PR) and secondary (SR) response to an influenza infection are indicated.
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Target cells are consumed rapidly, with the population
of infected cells peaking around the same time as viral
titer.
Because this type of model does not explicitly incorpo-

rate an immune response (IR), it is said to be target-cell
limited, i.e. the virus load reaches its peak and subse-
quently declines once most cells have been infected
and few susceptible cells remain. More accurately, the
peak is reached when bTV ≈ δI. The target-cell limited
nature of the models is clearly illustrated in Figure 2
where most target cells have been depleted by 54 hpi,
around the time of viral titer peak. This almost com-
plete depletion of target cells needs to be understood
in the context of susceptibility: Cells susceptible to the
virus and able to produce progeny virions as described
by the model do not necessarily directly correspond to
all epithelial cells in the respiratory tract. Indeed, it is
not well known which cells contribute to the infection
dynamics in the way described by the model. This
likely varies between different influenza strains and
hosts. Some cells might not be susceptible or be

productively producing virus for instance due to
reduced affinity of the virus for the types of receptors
the cells express on their surface [6,9-11], or due to
the protection provided by the presence or emergence
of an IR not explicitly represented in the model.
Applications to in vivo systems
The absence of an explicit IR in target-cell limited models
is equivalent to assuming that either the effect of the IR
on viral titer levels is negligible, or that its effect is some-
what constant through the course of the infection. In the
latter case, the immune system can then implicitly be
taken into account through parameters δ and c, which
control the rate of loss of infectious cells (I) and virus (V ),
respectively. And as mentioned above, the target-cell lim-
itation itself can also act as an implicit IR by limiting the
number of cells available for infection owing to the protec-
tive effect of the IR. Since viral titer in an influenza infec-
tion peaks around 48 hpi, whereas the primary adaptive IR
is not detectable before approximately 5 dpi [31,32], it
might be a reasonable assumption to ignore the IR, though
its role on infection clearance is still not fully resolved. We
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Figure 2 Typical kinetics exhibited by the target-cell limited model with a latent phase predicting the course of an influenza infection
within a host. We can see that the target cells (T) are consumed rapidly, with viral titer (V ) peaking shortly thereafter. In this picture, there is
approximately a 3.6 h delay between the infectious (I) cells’ peak and that of viral titer. The parameters, (b, k, δ, p, c) = (3.2 × 10-5 ([V] · d)-1, 4.0 d-1,
5.2 d-1, 4.6 × 10-2 [V]/d,5.2 d-1), and initial conditions, (T, E, I, V )t=0 = (4 × 108, 0, 0,7.5 × 102 [V]), where [V] is TCID50/mL of nasal wash are from
Table 3 of [15].
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will return to this point later when we discuss models
which incorporate an IR.
To our knowledge, the first mathematical model pro-

posed to describe the within-host dynamics of an influ-
enza infection was introduced by Larson et al. in 1976
[33]. The 7-compartment, 5-parameter model was fitted
against the viral titer for mice infected with A/Aichi/2/
68 (H3N2). The model could successfully reproduce the
viral titer curves for virus sampled from the lung, the
trachea, or the nasopharynx. While most of the five
parameters could not directly be related to specific
infection mechanisms (e.g., viral production rate,
infected cell lifespan), two of them were of particular
interest. Parameter P1, which corresponds to the initial
viral titer (V at time t = 0) is of interest because the
compartment (lung, trachea, or nasopharynx) with the
largest initial viral inoculum likely corresponds to the
primary area of deposition of the infectious dose admi-
nistered. Parameter P2, which corresponds to the expo-
nential viral titer growth rate is of interest because the
compartment with the largest viral titer growth rate is
that in which the virus reproduces most effectively. The
fit of the model to the various viral titer curves indi-
cated that virus replicated most effectively in the tra-
chea, then in the lungs, with the poorest replicative
efficiency found in the nasopharynx. Unfortunately, the
viral titer sampling was sparse (every 24 h) often provid-
ing only one or two viral titer points from which to
characterize the initial viral inoculum (P1) and the expo-
nential viral titer growth rate (P2). Yet this work shows
the early interest in mathematical modeling, and the
promise it holds to characterize infection kinetics in a
more quantitative way.
Thirty years after the Larson et al. model, Baccam et

al. performed a study where they fitted a set of simple
differential equation models to experimental viral titer
for the course of an influenza infection within a host
[15]. They first applied the target-cell limited models (1)
and (2), which had previously been applied successfully
to HIV [34,35] and HCV [36-38], to fitting viral titer of
primary infection of human volunteers with influenza
A/Hong Kong/123/77 (H1N1) [15]. Because the vari-
ables (target cells, latently infected cells, infectious cells,
and viral titer) and parameters (e.g. viral clearance rate,
cell lifespan) of the models correspond directly to biolo-
gical processes, the parameter values obtained from the
fits of the models to viral titers provided novel, quantita-
tive information about the kinetics of the infection.
While the reported best fit parameter values in this
study largely agree with known biology (e.g., Table 1),
the values should be used with caution due to the pro-
blem of overparametrization, which we will discuss
below. It is also important to note that the authors did
not perform a sensitivity analysis on the parameters of

their models. A year later, Handel et al. also used a sim-
ple target-cell depletion model to fit human influenza
data in the context of a study of neuraminidase inhibitor
resistance emergence [39]. However, the study suffers
from the same overparametrization issue as [15]. In
addition, since the main focus of that study was not
parameter estimation, the authors did not perform as
careful an analysis as was done in [15]. For instance, no
confidence intervals for parameter values were provided.
Since then, additional modeling studies have been per-
formed which incorporated components of the IR with
varying levels of details. We discuss these models below.
More recently, Dobrovolny et al. [40,41] have consid-

ered a simple extension of model (2) in which two cell
populations are represented: a default and a secondary
population. The two target cell model can capture the
kinetics of uncomplicated infections as well as that of
sustained and/or severe infections by incorporating the
IR in an implicit way via the secondary cell populations.
The default cell population is used to represent the
readily accessible cells typically consumed by an influ-
enza infection. The secondary population represents
cells that are protected from infection in the case of sea-
sonal infection, but are consumed to varying degrees in
severe or chronic infections, perhaps due to differing
cell tropism, lack of pre-existing immunity, or an aber-
rant IR. The two target cell model can also be applied
to the study of the effect of cell tropism (different virus
strains having different preferences for different cell
populations) in cell cultures such as human tracheo-
bronchiolar epithelium (HTBE) cells.
Applications to in vitro systems
While models that ignore host factors such as the adap-
tive IR constitute an approximation of in vivo systems,
they more accurately describe in vitro infections. In
vitro experiments have long been used to carefully char-
acterize specific aspects of the infection process, which
could not be studied easily in vivo. The application of
mathematical models to the analysis of in vitro infection
systems allows for simple models, which can focus on
the kinetics of cell-virus interactions alone, without the
need to additionally consider a wide array of host fac-
tors, such as the IR.
Several studies of mathematical modeling of in vitro

influenza infections, combined with experiments, have
been undertaken by the group of Reichl and colleagues
[42-45]. They have focused their attention on studying
the growth of influenza virus within microcarrier cell
cultures, with the goal of characterizing and maximizing
viral titer yield in these systems meant to produce virus
for use in influenza vaccines. In 2005, Möhler et al. pro-
posed a simple model for the kinetics of infection in a
microcarrier of MDCK cells infected with an equine
influenza A (H3N8) virus [42]. The model is similar to
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model (1), but includes the death and regeneration of
target (uninfected) cells, the loss of virus due to adsorp-
tion onto target cells, and incorporates a fixed delay of
4.5 h between cell infection and the start of viral pro-
duction, instead of an explicit eclipse phase as in model
(2). The model in [42] provides a good fit to HA titer
data. From their study, the authors conclude that viral
yield in these systems can be most effectively maximized
by increasing the total number of susceptible cells, upre-
gulating viral production rate, and delaying the apopto-
sis of infected cells. In a follow-up study, Sidorenko et
al. developed a Monte Carlo model for viral titer growth
in microcarrier MDCK cultures infected with an equine
influenza A (H3N8) virus that incorporates both intra-
and inter-cellular infection kinetics. Rather than expli-
citly representing all aspects of intra-cellular viral repli-
cation (a topic the group addressed in a separate study
[46]), they characterize a cell’s intracellular infection
state as different classes representing cells that contain
different numbers of intra-cellular virus equivalents.
This allowed the authors to fit not just the viral HA
titer, but also the fluorescence distribution for the popu-
lation of infected cells measured through flow cytometry
of cells stained using antibodies against the virus M1
and NP. These and further studies by this group [42-45]
offer a unique look at the process of influenza viral
infection in microcarrier cell cultures and a rare oppor-
tunity to develop and refine intra-cellular models for
influenza viral replication by providing high quality
experimental data.
The analysis of in vitro data using mathematical mod-

els can also reveal infection parameters buried within
experimental data. For example, in 2008, Beauchemin et
al. used models (1) and (2) to analyze the viral titer over
the course of experimental infections of MDCK cells
with influenza A/Albany/1/98 (H3N2) in a hollow-fiber
reactor under different concentrations of the antiviral
drug amantadine [47]. The aim of the work was to char-
acterize the effect of amantadine treatment on the
course of the infection. Using different variants of the
target-cell limited mathematical models, Beauchemin et
al. were able to determine the IC50 (0.3–0.4 µM) and
maximum efficacy (56–74%) of amantadine at blocking
the infection of susceptible cells. Research by Beauche-
min and colleagues has also focused heavily on the
application of mathematical models to the analysis of in
vitro infections, with special attention to the properties
of in vitro assays. In Holder et al., two mathematical
models were constructed to reproduce the course of an
influenza infection in two different viral assays: a plaque
and a viral yield assay [48]. The aim of the project was
to determine if and how the fitness of the oseltamivir-
sensitive wild-type (WT) A/Brisbane/59/2007 (H1N1)
differs from that of its H275Y (N1 notation) oseltamivir-

resistant counterpart. Interestingly, while the plaque
assay suggested that the WT strain was fitter (exhibited
a more rapid plaque growth), the viral yield assay sug-
gested that instead the H275Y mutant was fitter (exhib-
ited a larger exponential viral growth rate). Using
mathematical equivalents of the assays to run a large
number of simulated experiments, Holder et al. uncov-
ered that plaque assays, due to the spatial restriction of
the overlay on infection spread, were most sensitive to
the length of the cell’s eclipse phase, whereas the viral
yield assay was equally sensitive to virus infectivity, viral
production rate, and the length of the cell’s eclipse
phase. This difference in the sensitivity of the assays to
different aspects of the viral replication cycle explains
why the two assays appear to provide contradictory con-
clusions about the fitness of the two strains. Thus,
mathematical models can help shed light on the limita-
tions or caveats of in vitro assays. In return, in vitro
assays can teach us about fallacies in the formulation of
our mathematical models. Holder et al. investigated how
different in vitro assays can inform model development
[30,49]. Notably, they showed that use of either expo-
nential or Dirac-delta distributions for the times spent
by cells in the latent or productively-infected state are
not consistent with experimental results from single-
cycle viral yield experiments, whereas normal and log-
normal time distributions are. From these studies, it is
clear that a greater synergy between experiments and
mathematical models is highly desirable.

More extensive models which incorporate an immune
response
The importance of the immune response to influenza
infections
As discussed earlier, the kinetics of the viral titer over
the course of an influenza infection is well captured
with a simple model that does not include an IR.
Instead, one can account for the decline in viral load by
attributing it solely to the complete depletion of target
cells. While complete cell depletion — even if restricted
to a localized patch of cells — may appear excessive, at
least one histological study of influenza infection of fer-
rets supports this idea. In [50], Francis and Stuart-Harris
examined the lungs of ferrets infected intranasally with a
sub-lethal inoculum of influenza virus and noted des-
quamation of the tracheal area by 2 dpi, which pro-
gressed to a complete destruction of the epithelium.
Despite this severe insult, the animals survived and their
epithelial tissue fully regenerated within a few weeks.
While ferrets are generally considered a good animal
model for human influenza infections, it is not clear
how applicable this result is to influenza infections in
humans [51]. Reports of immunocompromised patients
shedding influenza virus for prolonged periods suggest
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that the IR plays an important role in clearing infection,
or at least in preventing chronic and potentially fatal
outcomes [52-55]. The IR is likely to be especially
important in more severe influenza cases where infec-
tion also involves the lower respiratory tract [56,57], as
observed in infections with avian-origin H5N1 [58,59],
and 1918 pandemic influenza strains [60,61]. In fact, it
is quite likely that some of the virulence of influenza
strains such as H5N1 or the 1918 H1N1 is due to an
over- or mis-responding IR causing immunopathology,
though the details are yet to be resolved [62-66]. Further
evidence of the crucial role of the IR comes from animal
studies in which components of the IR are depleted.
Those studies taken together suggest that both innate
and adaptive IR are important [32,67,68]. Thus, to gain
a comprehensive understanding of the progression of an
influenza infection within a host, i.e. to understand spe-
cifically how host factors shape the course and outcome
of an influenza infection, models incorporating an IR
are essential. Several recent modeling studies have taken
the IR into account, we will discuss those in the next
section.
Influenza models incorporating an immune response
To our knowledge, the first influenza modeling study
that included components of the IR was a very detailed
ODE model developed by Bocharov et al. in 1994 [69].
The model tracked macrophages, CD4+ T-cells and CD8
+ Cytotoxic T Lymphocytes (CTL), B-cells, antibodies
and interferon (IFN) in a very detailed manner. The
authors used the model to analyze how different compo-
nents of the IR affect infection kinetics. In particular,
they found that a 50-fold increase in specific antibodies
and CTLs could prevent an infection from occurring.
Another model that is similar in detail to the Bocharov
et al. model has recently been developed and studied by
Hanciglou et al. [70]. The authors analyzed the effect of
initial viral load on the infection kinetics and found that
for small initial viral load the disease progresses through
an asymptomatic course, for intermediate value it takes
a typical course with constant duration and severity of
infection but variable onset, and for large initial viral
load the disease becomes severe. Two other models, by
Chang et al. [71] and Tridane at al. [72], are simpler
models based on a variant of the target-cell limited
model (2), with an additional component to describe the
dynamics and effect of CTLs. The Chang et al. study
also included IFN. Chang et al.’s model suggested that
the time and level of virus peak is influenced by the
innate (IFN) response, while the duration of the infec-
tion and clearance phase is determined by the CTL
response. Tridane et al. focused in their study on inves-
tigating the impact of different model choices for the
CTL response on the infection dynamics and found that

slight changes in how the CTL dynamics is implemented
can influence the resulting dynamics.
Some of the results obtained from these models could

have important implications for treatment or vaccine
strategies. However, large uncertainty with regards to
parameter values and overall model structure make it
difficult to evaluate the validity of the models and their
predictions. While all these models [69-72] were con-
structed and parametrized based on the known biology
of influenza infections, until such models are brought
into direct contact with data for model validation or fal-
sification, the results should mainly be considered as
providing conceptual insights.
Several other modeling studies have been performed

that were based on a direct connection between models
and data. In the study by Baccam et al. [15] already
mentioned above, the authors employed one model that
included an IR component, namely IFN. Fitting such a
model to data, they found that while the fits obtained
from this model were not statistically significantly better,
they could reproduce a double peak in virus load, some-
thing that was observed in a few of the patients they
studied. In another study dealing with the issue of drug
resistance emergence during infection, Handel et al. [39]
fitted both a model with and without an IR. The latter
included a very simplistic version of an antibody
response. The authors found that the available data did
not permit discrimination between the two models.
More detailed and comprehensive models that com-

pared various IR models to data have since been pub-
lished. Lee et al. [73] developed a model that included
all the major effectors of the adaptive IR (CD4+ and
CD8+ T-cells, B-cells/antibodies) as well as explicit
descriptions of the IR activation process mediated by
dendritic cells. They were able to compare their model
to (sparse) data and thereby partially validate it. A fol-
low-up study by the same group made use of extensive
experimental data specifically collected for the purpose
of fitting the model [31]. In this study, Miao et al. used
several ingenious ideas for fitting their models to the
data. They divided the course of the infection into an
early and late phase, corresponding to infection kinetics
in the absence and presence of an adaptive IR, respec-
tively. They also did not attempt to construct ODEs to
capture the dynamics of IgA and IgG antibodies, and
CTLs. Instead, they fitted smooth curves to the data
sets, which were then used as given quantities in their
ODE model. The separation of infection dynamics into
an early and late phase and the large amount of data
the authors had available allowed for a more detailed
analysis of the importance of different aspects of the IR
(innate, adaptive) during the course of the infection, and
the authors were able to estimate important kinetic
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parameters and how they varied during the infection
(see Table 1).
Another recent study by Saenz et al. used a unique

dataset of virus load and infected cell levels in ponies to
study a model that included an IFN response [74]. The
study suggested that inclusion of an IFN response was
sufficient to describe the dynamics, while a model with-
out it did not fit the data well. It is still possible, and
quite likely, that other model alternatives with adaptive
IR components might fit the data equally well, therefore
the relative importance of IFN is not yet fully established.
Yet another modeling study using data from two dif-

ferent experimental studies in mice with intact and
compromised IRs was conducted by Handel et al. [75].
The authors compared different models with and with-
out both innate and adaptive IR components. They
found that both the innate and adaptive IRs are required
to provide adequate explanation of the data. For one of
the datasets investigated, the authors found that they
could not describe the IFN data using a simple equation
such as those used in other studies [15,74]. Instead,
Handel et al. used the IFN level as given and fitted the
remaining data to the dynamical model using an
approach similar to that used in [31]. The study also
showed that a discrimination between different types of
adaptive IRs (i.e. T-cell versus B-cell/antibody) was not
possible based on the available data [75].
The studies described thus far are based on differential

equations. Another class of models, spatial agent-based
models, were also proposed [76,77]. In 2005, Beauche-
min et al. introduced an agent-based model for the
spread of influenza within a host. In 2006, Beauchemin
used this model to explore how spatially localized effects
can come to shape and dominate the course and out-
come of the infection. While the model is more akin to
a toy model, its analysis did yield some insight into the
effect of spatial versus well-mixed implementation of
cell regeneration and CTL expansion on chronic infec-
tion outcomes.

Lessons learned and challenges ahead
Conceptual insights and parameter estimates obtained
from the models
At the most fundamental level, models can be used to
explore a complicated dynamical system, and to gain
basic insights into the relative importance of host and
viral factors. Such models can either be simple and try
to capture only the most fundamental interactions mak-
ing up the kinetics of the infection, or they can be
detailed and try to integrate most of the known biologi-
cal processes. Unfortunately, the quantity and diversity
of available data is usually limited and the results from
many modeling efforts therefore remain predominantly
conceptual and qualitative. These models are still

excellent tools that can help shape our understanding of
infection kinetics. The power of modeling has been well
documented for HIV [78,79]. For influenza, some useful
insights have thus far been obtained as well.
The spatial influenza models described at the end of

the previous section [76,77], provided important qualita-
tive insights into the importance of spatial effects in the
infection dynamics. Another insight was provided in the
study by Handel et al. [39], where it was shown that dif-
ferent assumptions for within-host dynamics (a model
with and without an IR) lead to vastly different predic-
tions for the likelihood of drug resistance emergence
during treatment. This suggests that it will be crucial to
better understand the role of target-cell depletion versus
IR, an issue that has since been addressed in several
more recent modeling studies [74,75]. Another impor-
tant conceptual contribution was made by the study of
Smith et al. [27], which showed that a two-phase
approximate solution can be used to characterize virus
dynamics, and this concept was applied to fit data in the
study by Miao et al. [31].
Once sufficient understanding of a system has been

obtained and data are available, one can formulate
mathematical models that encapsulate specific mechan-
istic hypotheses. By comparing the models with data,
one can discriminate between those hypotheses. For
instance, in the work by Saenz et al. [74], the hypothesis
could be phrased as “a model purely based on target-
cell depletion does not explain the data, while a model
that includes an IFN response can”. By fitting the model
to data, the authors were able to test (and affirm) this
hypothesis. The crucial part for such studies is the avail-
ability of sufficient data to allow falsification of models.
Just because a model fits the data does not mean that it
is correct. This is especially true for more complicated
models, such as the ones including detailed IRs. How-
ever, if a model does not fit the data, one has learned
something important, i.e. that the mechanisms as imple-
mented in the model do not adequately represent what
is going on in the real system. Often, data can permit
the elimination of certain models and hypotheses, while
a large number of usually more detailed models cannot
be ruled out. An example of this is the study by Handel
et al. [75] mentioned previously. While the authors were
able to rule out a model that did not include an innate
or adaptive IR, they were not able to discriminate
between different alternative implementations of such
IRs. It is therefore important to realize that “negative
results”, i.e. the lack of agreement between model and
data, is often the most important insight.
Once a model has been found that can be trusted to

reasonably approximate the biology (i.e. the model is
well-supported by a fair amount of data), one can fit the
model to experimental data to obtain estimates for the

Beauchemin and Handel BMC Public Health 2011, 11(Suppl 1):S7
http://www.biomedcentral.com/1471-2458-11-S1-S7

Page 8 of 15



kinetic parameters of a system. This is especially helpful
if such parameters cannot easily be obtained through
direct experimental measurements. The parameters one
can estimate depend on the specific model and the data
available. Almost all models published so far include
parameters for the average lifespan of an infected cell
and the half-life of virions. Other parameters that have
been estimated from some models include the average
length of the eclipse (latent) phase, the growth or repla-
cement rate of new susceptible cells and the efficacy of
drug treatment. In Table 1, we list estimates for some of
these parameters, obtained from fitting data to the
mathematical models as described above. For compari-
son, we also show estimates based directly on experi-
mental studies. However, one should be aware of the
key caveats regarding the reliability of parameter esti-
mates obtained from fitting models to experimental
data. These are discussed in the next section.

Data diversity and quantity and its effect on parameter
identifiability
Quantitative knowledge of infection parameters could
provide much needed answers to many important ques-
tions. For example, say one could determine quantita-
tively from experiments the rate at which virions of a
given influenza strain are produced in a given cell line.
Using this information one could compare strains with
respect to their replication efficiency, could map how
specific mutations within a given strain affect specifically
viral production, or what concentration of an antiviral is
required to block viral production by a specific amount.
What, then, are the roadblocks in making this goal a
reality? One is insufficient data, both in terms of diver-
sity, quality, and quantity. While more complete and
complex mathematical models can be developed readily,
use of these models to predict infection kinetics or to
estimate unknown parameters is questionable if critical
aspects of the model or key parameters are unknown or
too poorly supported by experimental data. Thus, if one
is to use mathematical models to extract parameter
values, one can only add as many components as can be
determined from data, and this, ultimately, is what limits
the complexity of the models [94].
Consider, for example, the target cell limited models

(1) and (2). These models are well-suited to the analysis
of viral titer curves from in vitro or in vivo uncompli-
cated infections because, like the models themselves,
these curves typically follow a simple shape: a period of
exponential viral growth (lg), followed by a peak in the
viral titer (Vp) at some time tp post-infection, followed
by a period of exponential viral decay (ld). By linearizing
model (2) about (T, E, I, V ) = (T0, 0, 0,0), Smith et al.
[95] derived an expression for lg and for ld. More
recently, Holder et al. [49] simplified the expression for

lg further by assuming that
p T k c 0  , , ,

such that,
for model (2)
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These expressions illustrate how the determination of
k, δ, and c based solely on viral titer is not be possible.
As remarked by Smith et al. [95], this degeneracy is
likely the reason why parameter fits obtained in Baccam
et al. [15] for different patients often resulted in these
three (or two of these three) parameters being set to the
same value by the parameter fitting routine.
Ultimately, since viral titer courses can be well

described using just four parameters [30], one can at
best hope to extract four parameters from viral titer
alone. The issue of parameter identifiability for models
(1) and (2) has been investigated by Miao et al. [96]
who determined for each of the two models what type
of data (e.g. viral titer alone, or viral titer and fraction of
infected cells) and how much of that data (e.g., 2 points,
8 points) would be required to identify each of the mod-
el’s parameters. These studies [30,96] outline the need
for more data. Not only is more data needed, quality
and diversity are also crucial. For example, having 100
viral titer measurements all sampled after viral titer
peak simply cannot make up for the absence of points
prior and near the viral titer peak without which one
cannot infer the shape of the viral titer curve. Equiva-
lently, measuring only virus titer will not be enough to
give a full picture, other quantities, such as different
components of the IR, will also need to be carefully
measured.

Reconciling the disconnect between experimental
measures and model variables
To allow easy comparison with experimental data,
mathematical models are typically described in terms of
variables, which correspond to, or can easily be related
back to, experimentally measurable quantities. Unfortu-
nately, these quantities (e.g., plaque forming units, fluor-
escence level) are at best relative measures of quantities
of interest (e.g., infectious viral titer levels, proportion of
cells infected) and are often related to quantities of
interest in nontrivial ways. For example, the number of
plaque forming units (pfu) in a viral sample is thought
to correspond to the number of virions that are infec-
tious to the cells in the culture used to measure the
viral pfu. If the virus solution is collected from a ferret
but the viral pfu is measured in MDCK cells, one has
not determined the number of virions infectious to fer-
rets, but rather those infectious to MDCK cells. When
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using a count of the total number of virions rather than
the number of infectious virions (using RT-PCR, for
example), models typically assume that the fraction of
infectious to non-infectious virions over time remains
constant. However, since influenza virions loose infectiv-
ity faster than they lose RNA integrity [97], it is unlikely
that this assumption is correct. Experimental results for
HIV suggest that virion infectivity is not constant over
time [98] and mathematical models have incorporated
this using a time-varying infectivity for virions [99].
Thus, when constructing models with the aim to extract
parameters, modelers must be aware of the nature of
the measured quantities and have a keen understanding
of how they relate to the variables of their model.
The units used to measure the experimental quantities

will often “contaminate” the model’s parameters, greatly
limiting the usefulness of their values. One way to
emphasize the effect of relative measures on a model’s
parameters is to perform a rescaling of each variable to
see how each parameter will be affected. For example,
using model (2), let us consider the rescaling of the cell
population Cm = ΓC where C is any of T, E, or I, and
Vm = gV , with C and V the true number of cells and
infectious virus particles, respectively, and Cm and Vm

their experimentally measured equivalent. Thus, we get
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where only the virus infectivity, b, and the viral pro-
duction rate, p, are affected by the rescaling. Hence,
unless both g and Γ are known, the viral production rate
cannot be expressed in terms of useful units, namely
number of infectious virions produced per infected cell
per unit time. Beauchemin et al. [47] remarked that, in
their assays, the measured viral titer corresponded to no
more than 10% of the true number of infectious virus
particles.
While knowing the relative value of p is sufficient in

many applications (e.g., strain A produces three times
more virus than strain B), the modeling of drug resis-
tance demands that the absolute value of this parameter
be known. Indeed, the rate of emergence of mutations is
dependent on the rate of production of virions and
unless experimental units of infectious virus (e.g. pfu/
mL) can reliably be converted to an actual number of
infectious virions, model predictions for the emergence

of resistance are uncertain and their robustness must be
tested using various viral production rates.
It is also important to understand that parameters

extracted by applying a mathematical analysis to experi-
mental data can sometime also be extracted from
experiments. However, the parameters extracted experi-
mentally may not be equivalent to those extracted
through mathematical modeling of experimental data.
For example, several in vitro assays are traditionally
used to estimate the IC50 of a drug against a particular
virus strain. In such assays, the IC50 represents the drug
concentration required to half the viral titer or fraction
of dead cells observed experimentally compared to that
seen for an untreated infection at a given time post-
infection. Since in these experimental assays the IC50 is
defined as the concentration required to half a certain
experimental observable, the IC50 estimated in this man-
ner varies between different techniques and assays, and
cannot readily be compared. In contrast, mathematical
models define the IC50 as the concentration of drug
required to half a specific viral replication parameter (e.
g. virus production rate by an infected cell) [47]. In that
case, the effect of a drug on a virus replication para-
meter can be measured in several different assays by fit-
ting the mathematical model to assay data (e.g., viral
titer versus time for different drug concentrations). The
IC50 estimates thus obtained are more robust and
should be readily comparable for a given cell-virus strain
pair, irrespective of the details of the experimental pro-
cedure followed. As such, mathematical models may
present a preferable approach to extracting the IC50 for
a given drug-strain pair.

Discussion
Public health contributions of mathematical models
The usefulness of mathematical modeling for public health
has long been recognized at the between-host population
level. Starting as early as the work of Bernoulli [100], and
being steadily used since the beginning of the 19th cen-
tury, all the way to the recent heavy use of detailed models
for influenza and other infections, mathematical and com-
putational models have been and continue to play an
important role in shaping our understanding of the evolu-
tionary and transmission dynamics of infectious diseases,
and are important tools for designing appropriate inter-
vention strategies [18-26,101]. While the mathematical
modeling of infection dynamics within a host does not
have as long a history as that of between-host modeling, it
has nevertheless already contributed important insights.
Most notably, several studies combining data with mathe-
matical models for HIV have had a direct impact on drug
treatment strategies [34,79,102]. The use of mathematical
and computer models to study influenza infection within a
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host or in vitro is much younger than the modeling of
influenza at the population level or the within-host
modeling of other viral infections such as HIV. Most of
the mathematical modeling of influenza infections has
only been pursued in earnest during approximately the
last five years. While this means that most results
obtained today are tentative and further studies are cer-
tainly needed, the models have already provided some
important insights. As described above, the models
helped to better quantify viral fitness [48], shed light on
the importance of specific IR components on the infec-
tion dynamics [31,74,75], gave conceptual insights into
the role of putative vaccines and virus inoculum dose
on virus dynamics and severity [69,70], and allowed for
the estimation of drug efficacy [39,47]. While most of
these findings clearly need to be confirmed and further
strengthened by additional studies, both experimental
and theoretical, the direct implications for how we
understand the infection and implement better treat-
ment strategies such as vaccinations and drugs, is
evident.

Future directions
It is obvious that a general direction for the future is to
perform more and more detailed modeling studies, pre-
ferably in close contact with appropriate data (i.e. data
of high quality, quantity, and diversity). The recent com-
bined experimental and modeling work by Miao et al.
[31] is a very promising step in that direction. Modeling
studies can contribute to our understanding of influenza
infection dynamics in many different ways, here we just
name a few directions that we believe to be especially
interesting and important.
While understanding the infection dynamics per se is

a useful and necessary first step, in the end we are inter-
ested in outcomes that are important from a medical or
public health perspective. For instance, can we develop
within-host models that can produce and predict quan-
tities such as “virulence” or “transmissibility” as read-
outs? Several tentative steps in this direction have
recently been made [39,74], but confirmation with
experiments is currently lacking.
To further improve treatment and intervention strate-

gies, we need to better understand their impact and
consequences. With the increasing level of antiviral
resistance in circulating influenza strains, much activity
is currently ongoing to investigate the usefulness of
drug combination therapy for the treatment of influenza,
a strategy similar to that already employed with HIV
[103-110]. We believe that experimental work in this
area will benefit from the additional input, which dyna-
mical models like those outlined here can provide [73].
Another area of interest is to better understand vaccines

and vaccine efficacy [111]. Most experimental animal

studies currently measure protection by vaccines by
recording mortality of the animals. However, it might be
useful to have a more nuanced understanding of the
effects of vaccine on the infection dynamics, something for
which mathematical models are again useful tools [112].
One active area of research in biology in general is the

development of multi-scale models [113-117]. The interest
in multi-scale models can be seen as driven by an over-
arching long-term goal: To develop the ultimate predictive
tool that would allow one to take a genome sequence of a
new influenza strain (or other pathogen), and based on the
sequence, predict crucial phenotypes such as virulence,
transmissibility at the population level, and susceptibility to
drugs – without the need of potentially difficult and
lengthy experiments [118,119]. We are obviously far from
such a comprehensive framework, but mathematical and
computational modeling will be essential to reaching that
goal. To make progress in that direction, we need to
develop models that allow mappings from genotype to
complex phenotypes, which naturally calls for a multi-
scale, “systems” approach. As an example, the virus pro-
duction rate is clearly determined by dynamical processes
inside an infected cell. The models described above predo-
minantly keep the rate of viral production by infected cells
fixed. The simplest models assume that production starts
right away once a cell gets infected (Eqs. (1)), whereas
slightly more detailed models allow for an initial latent
phase (Eqs. (2)). Recently, Sidorenko et al. [46] developed
an intra-cellular model for influenza replication and used it
to study virus production rate. Their model suggests that
virion production is not constant but instead increases
with time. While the lack of good intracellular data means
the caveats about quantitative interpretation of the results
outlined above apply, it will clearly be interesting to
start combining such intracellular models with the cell-
population based models described herein. Similarly, it will
be important to connect the within-host dynamics with
the dynamics at the host population level [113,120]. A few
recent studies have started to link those two scales for
influenza to study drug resistance [39] and to map within-
host virus load to transmission potential [121].
While the development of new and more detailed

models and data will be important, it is equally impor-
tant to improve the rigor with which models are ana-
lyzed. For instance, extensive sensitivity analysis, as has
been used in infectious disease modeling [122-124],
could be useful. This is especially true for models con-
taining many parameters that are not fitted but instead
estimated from the literature. More sophisticated, multi-
level fitting schemes and Bayesian/MCMC frameworks
that go beyond the current simple approaches might
prove equally helpful [125-127].
While our focus in this review has been on dynamical

mathematical and computational models based on
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differential equations or similar dynamical formulations,
another class of models, namely static or statistical mod-
els, have also recently contributed insights into influenza
infection dynamics. In a very exhaustive study of human
experimental influenza infections, Carrat et al. [128]
were able to use a combination of data and simple mod-
els to estimate the duration of infectiousness and other
quantities. Liao et al. [129] reanalyzed the same dataset
and used it to estimate the relative transmissibility of
different influenza strains, as well as other epidemiologi-
cally relevant quantities. Lau et al. [130] used similar
approaches to analyze data for naturally acquired infec-
tions. A combination of such static/statistical models
with the dynamical models described herein will likely
to lead to further progress.

Summary
In our opinion, mathematical and computational models
are powerful tools to study the infection dynamics of
infections. The last few years have seen increased inter-
est in such modeling studies, and we are likely going to
see further increases in such studies in the future. We
believe such studies can do for influenza what similar
studies have already done for infections such as HIV or
HCV. To achieve this, it will be crucial that the models
be connected to data as tightly as possible, and that the
model type and complexity is appropriate for the ques-
tion one wants to address. As long as these simple rules
are followed, we have no doubt that modeling will con-
tinue to provide important insights into the infection
dynamics and will eventually help us address several of
the questions mentioned in the previous section, as well
as many others. In addition, much of the progress will
not only benefit our understanding of influenza, but will
also help to study other acute infections on the within-
host level, an area that is still much less developed com-
pared to similar studies at the between-host level.
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